
CHAPTER 7

Program Development:
Software Commands
Descriptions and Formats

7•

INTRODUCTION
	

Program Development:
Software Commands —
Description and Formats

INTRODUCTION

The purpose of this chapter is to provide reference data for the various software
development systems available for the 9900 family of microprocessors and microcomputers.
Most of the information is reproduced in reference card form on heavy stock and inserted
at the back of the book. Perforations allow easy removal. So pull out the ones you will use
and fold for pocket reference. The specific choice of programming system will dictate
which cards to pull.

Table 7-1 lists the sections in the chapter. One or more cards are made for those sections
marked with a bullet. The section on Assembly Language programming describes the
basic format for coding instructions and assembler directives. It is a general topic,
applicable to all of the programming systems.

The 9900 reference card will come in handy for product design and programming activities
for any of the processors. Explanation of the terms, mnemonics instruction execution rules,
etc. can be found in Chapters 4, 5, and 6.

The complete TM 990/402 Line-by-Line Assembler User's Guide is included because this
EPROM resident software is used in Chapter 9. It should serve as an illustration of the need
for some form of an assembler in writing even the simplest programs. Contrast the
programming effort of Chapter 3 will be the extended application of Chapter 9, and you will
appreciate the power of this LBL assembler.

Reference material for the other programming systems is in the form of lists of commands
and their syntax. These pages are not stand-alone documents. Software documentation is
supplied with each of the programming systems and is required for full explanations of the
commands and their use. Experienced designers always need assistance in recalling exact
command mnemonics and their formats. Thus, this chapter supports you in any
programming environment by appropriate reminders.

Table 7-1

Assembly language programming and
assembler directives

• 9900 Reference Data
TM 990/402 Line-by-Line Assembler

• TIBUG Monitor
• TM 990/302 Software Development board

• TXDS Commands for the FS 990 PDS
• AMPL Reference data
• POWER BASIC Commands
• Cross Support reference data

Assembler
Simulator
Utilities

7-2
	

9900 FAMILY SYSTEMS DESIGN

Assembly Language Programming:
Formats and Directives

711

ASSEMBLY LANGUAGE
PROGRAMMING

Program Development:
Software Commands —
Description and Formats

■ 7

ASSEMBLY LANGUAGE PROGRAMMING

An assembly language is a computer oriented language for writing programs. The
TMS9900 recognizes instructions in the form of 16 bit (or longer) binary numbers, called
instruction or operation codes (Opcodes). Programs could be written directly in these
binary codes, but it is a tedious effort, requiring frequent reference to code tables. It is
simpler to use names for the instructions, and write the programs as a sequence of these
easily recognizable names (called mnemonics). Then, once the program is written in
mnemonic or assembly language form, it can be converted to the corresponding binary
coded form (machine language form). The assembler programs described here indicate
parts of PX9ASM, TXMIRA and SDSMAC, which operate on cassette, floppy disc, and
moving head disc systems respectively. Several other assemblers are available from TI
which provide fewer features, but operate with much smaller memory requirements.

ASSEMBLY LANGUAGE APPLICATION

The assembly language programming and program verification through simulation or
execution are the main elements involved in developing microprocessor programs. The
overall program development effort consists of the following steps:

• Define the problem.
• Flowchart the solution to the problem.
• Write the assembly language program for the flowchart.
• Execute the Assembler to generate the machine code.
• Correct any format errors indicated by the Assembler.
• Execute the corrected machine code program on a TMS9900 computer or on a

Simulator to verify program operation.

This program development sequence is defined in flowchart form in Figure 7-1.

ASSEMBLY LANGUAGE FORMATS

The general assembly language source statements consists of four fields as follows:

LABEL MNEMONIC OPERANDS COMMENT

The first three fields must occur within the first 60 character positions of the source record.
At least one blank must be inserted between fields.

Label Field

The label consists of from one to six characters, beginning with an alphabetic character in
character position one of the source record. The label field is terminated by at least one
blank. When the assembler encounters a label in an instruction it assigns the current value
of the location counter to the label symbol. This is the value associated with the label
symbol and is the address of the instruction in memory. If a label is not used, character
position 1 must be a blank.

7-4 	 9900 FAMILY SYSTEMS DESIGN

Program Development:
Software Commands —
Description and Formats

ASSEMBLY LANGUAGE
PROGRAMMING

7-5 9900 FAMILY SYSTEMS DESIGN

DEFINE
PROBLEM

FLOWCHART
SOLUTION

CONVERT
FLOWCHART

TO
ASSEMBLY
LANGUAGE
PROGRAM

EXECUTE
ASSEMBLER

ANY
PROGRAM
ERRORS?

CORRECT
PROGRAM

YES

NO

EXECUTE OR
SIMULATE THE

PROGRAM

YES

DEVELOPMENT
COMPLETE

Figure 7-1. Program Development Flowchart

CORRECT
PROGRAM

NO

71

ASSEMBLY LANGUAGE
PROGRAMMING

Program Development:
Software Commands —
Description and Formats

Mnemonic or Opcode Field

This field contains the mnemonic code of one of the instructions, one of the assembly
language directives, or a symbol representing one of the program defined operations. This
field begins after the last blank following the label field. Examples of instruction mnemonics
include A for addition and MOV for data movement. The mnemonic field is required since
it identifies which operation is to be performed.

Operands Field

The operands specify the memory locations of the data to be used by the instruction. This
field begins following the last blank that follows the mnemonic field. The memory locations
can be specified by using constants, symbols, or expressions, to describe one of several
addressing modes available.

Comment Field

Comments can be entered after the last blank that follows the operands field. If the first
character position of the source statement contains an asterisk (*), the entire source
statement is a comment. Comments are listed in the source portion of the Assembler listing,
but have no affect on the object code.

TERMS AND SYMBOLS

Symbols are used in the label field, the operator field, and the operand field. A symbol is a
string of alphanumeric characters, beginning with an alphabetic character.
Terms are used in the operand fields of instructions and assembler directives. A term is a
decimal or hexadecimal constant, an absolute assembly-time constant, or a label having an
absolute value. Expressions can also be used in the operand fields of instructions and
assembler directives.

Constants

Constants can be decimal integers (written as a string of numerals) in the range of — 32,768
to + 65,535. For example:

257
Constants can also be hexadecimal integers (a string of hexadecimal digits preceded by >).
For example:

> 09AF
ASCII character constants can be used by enclosing the desired character string in single
quotes. For example:

`DX'
Throughout this book the subscript 16 is used to denote base 16 numbers. For example,
the hexadecimal number 09AF is written 09AF16.

7-6 	 9900 FAMILY SYSTEMS DESIGN

Program Development:
Software Commands —
Description and Formats

ASSEMBLY LANGUAGE
PROGRAMMING

Symbols

Symbols must begin with an alphabetic character and contain no blanks. Only the first six
characters of a symbol are processed by the Assembler.

The Assembler predefines the dollar sign (5) to represent the current location in the
program. The symbols RO through R15 are used to represent workspace registers 0
through 15, respectively.

A given symbol can be used as a label only once, since it is the symbolic name of the
address of the instruction. Symbols defined with the DXOP directive are used in the
OPCODE field. Any symbol in the OPERANDS field must have been used as a label or
defined by a REF directive.

Expressions

Expressions are used in the OPERANDS fields of assembly language statements. An
expression is a constant, a symbol, or a series of constants and symbols separated by the
following arithmetic operators:

+ addition
— subtraction
* multiplication

/ division

Unary minus is performed first and then the expression is evaluated from left to right. A
unary minus is a minus sign (negation) in front of a number or a symbol.

The expression must not contain any imbedded blanks or extended operation defined
(DXOP directive) symbols.

The multiplication and division operations must be used on absolute code symbols. The
result of evaluating the expression up to the multiplication or division operator must be an
absolute value. There must not be more than one more relocatable symbol added to an
expression than are subtracted from it.

The following are examples of valid expressions:

BLUE+ 1 	The sum of the value of symbol BLUE plus 1.

GREEN — 4 	The result of subtracting 4 from the value of symbol GREEN.

2*16 + RED 	The sum of 32 and the value of symbol RED.

440/2 — RED 220 minus the value of symbol RED.

9900 FAMILY SYSTEMS DESIGN 	 7-7

ASSEMBLER DIRECTIVES
	

Program Development:
Software Commands —
Description and Formats

■ 7

ASSEMBLER DIRECTIVES

GENERAL INFORMATION

The assembler directives are used to assign values to program symbolic names, address
locations, and data. There are directives to set up linkage between program modules and to
control output format, titles, and listings.
The assembler directives take the general form of:

LABEL DIRECTIVE EXPRESSION COMMENT

The LABEL field begins in column one and extends to the first blank. It is optional on all
directives except the EQU directive which requires a label. There is no label in the
OPTION directive. When no label is present, the first character position in the field must
be a blank. When a label is used (except in an EQU directive) the label is assigned the
current value of the location counter.

The two required directives are:

IDT Assign a name to the program
END Terminate assembly

The most commonly used optional directives are:

EQU 	Assign a value to a label or a data name.
RORG 	Relocatable Origin
BYTE 	Assign values to successive bytes of memory
DATA 	Assign 16 bit values to successive memory words
TEXT 	Assign ASCII values to successive bytes of memory

Other directives include:

AORG 	Absolute (non-relocatable) Origin
DORG 	Dummy Origin
BSS 	Define bytes of storage beginning with symbol
BES 	Define bytes of storage space ending with symbol
DXOP 	Define an extended operation
NOP 	No operation Pseudo-instruction
RT 	Return from subroutine Pseudo-instruction
PAGE 	Skip to new page before continuing listing
TITL 	Define title for page headings
LIST 	Allows listing of source statements
UNL 	Prevents listing of source statements
OPTION 	Selects output option to be used
DEF 	Define symbol for external reference
REF 	Reference to an external source

7-8 9900 FAMILY SYSTEMS DESIGN

Program Development:
	 ASSEMBLER DIRECTIVES

Software Commands —
Description and Formats

REQUIRED DIRECTIVES

Two directives must be supplied to identify the beginning and end of the assembly language
program. The IDT directive must be the first statement and the END directive must be

-4•"' the last statement in the assembly language program.

Program Identifier
	 IDT

This directive assigns a name to the program and must precede any directive that generates
object code. The basic format is:

IDT 'Name'

The name is the program name consisting of up to 8 characters. As an example, if a
program is to be named Convert, the basic directive would be:

IDT 'CONVERT'

The name is printed only when the directive is printed in the source listing.

Program End
	 END

This directive terminates the assembly. Any source statement following this directive is
ignored. The basic format is:

END

INITIALIZATION DIRECTIVES

These directives are used to establish values for program symbols and constants.

Define Assembly-Time Constant
	 EQU

Equate is used to assign values to program symbols. The symbol to be defined is placed in
the label field and the value or expression is placed in the Expression field:

Symbol EQU Expression

The symbol can represent an address or a program parameter. This directive allows the
program to be written in general symbolic form. The equate directive is used to set up -....
the symbol values for a specific program application.

74

9900 FAMILY SYSTEMS DESIGN 	 7-9

ASSEMBLER DIRECTIVES Program Development:
Software Commands —
Description and Formats

The following are examples of the use of the Equate directive:

TIME EQU HOURS+ 5
N 	EQU 8
VAR 	EQU >8000

Initialize Memory

BYTE
DATA
TEXT

These directives provide for initialization of successive 8 bit bytes of memory with
numerical data (BYTE directive) or with ASCII character codes (TEXT directive). The
DATA directive provides for the initialization of successive 16 bit words with numerical
data.

The formats are the same for all three directives:

Directive Expression-list

The Label and Comment are optional. The expression or value list contains the data entries
for the 8 bit bytes (BYTE directive), or the 16 bit words (DATA directive), or a character
string enclosed in quotes (TEXT directive).

Examples of the use and effects of these directives are shown in Figure 7-2.

PROGRAM LOCATION DIRECTIVES

These directives affect the location counter by causing the instructions to be located in
specified areas of memory.

■ 7 Origin Directives

AORG
RORG
DORG

These directives set the address of the next instruction to the value listed in the expression
field of the directive:

Directive Expression

The expression field is required on all except the RORG directive. It is a value or an
expression (containing only previously defined symbols). This value is the address of the
next instruction and is the value that is assigned to the label (if any) and to the location
counter. The AORG and DORG expressions must result in an absolute value and contain
no character constants.

7-10 	 9900 FAMILY SYSTEMS DESIGN

Program Development:
	

ASSEMBLER DIRECTIVES
Software Commands —
Description and Formats

,41111b.,

Example Directives:

KONS 	BYTE >10, —1, 'A', `13', N + 3

WD1 	DATA >01FF, 3200, — `AF', 8, N + > 1000

MSG1 TEXT 'EXAMPLE'

AFFECTS ON
MEMORY

LOCATION

MEMORY DATA:
DIRECTIVE

ENTRY

RESULTING DATA
(BINARY FORM)

RESULTING DATA
(HEXADECIMAL)

KONS >10,-1 0001 0000 1111 1111 1 OFF
KONS +2 'A', '13' 0100 0001 0100 0010 4142
KNOS+ 4 N + 3 0000 1011 X X OB--

•

• • • • • • •
WD1 >01FF 0000 0001 1111 1111 01FF
WD1+2 3200 0000 1100 1000 0000 0080
WD1+4 —`AF' 1011 1110 1011 1010 BEBA
WD1 +6 8 0000 0000 0000 1000 0008
WD1 +8 N+>1000 0001 0000 0000 1000 1008

• • • • • • •
• • • • • • •

MSG1 'EX' 0100 0101 0101 1000 4558
MSG1 +2 'AM' 0100 0001 0101 1101 414D
MSG1 +4 TU 0101 0000 0100 1100 504C
MSG1 +6 'E' 0100 0101 X X 4E--

XX (--) is original unaltered data in this location. N is assumed to be previously defined as 8.

Figure 7-2. Initialization Directive Examples

The AORG directive causes this value to be absolute and fixed. For example:

AORG >1000 + X

If X has been previously defined to have an absolute value of 6, the next instruction would
be unalterably located at the address 1006.. If a label had been included, it would have
been assigned this same value.

The RORG directive causes this value to be relative or relocatable so that subsequent
operations by the assembler or simulator can relocate the block of instructions to any
desired area of memory. Thus, a relocatable block of instructions occupying memory
locations 1000. to 1020. could be moved by subsequent simulator (or other software)
operations to locations 2000 16 to 2020.. An example RORG statement is:

SEG1 RORG > 1000

74

9900 FAMILY SYSTEMS DESIGN 	 7-11

ASSEMBLER DIRECTIVES Program Development:
Software Commands —
Description and Formats

■ 7

This directive would cause SEG1 and the value of the location counter (address of the next
instruction) to be set to 1000 16 . This and all subsequent locations are relocatable.

SEG2 RORG

This directive would cause subsequent instructions to be at relocatable addresses. SEG2 and
the address of the next instruction would be set to the value of the location counter.

The DORG directive causes the instructions to be listed but the assembler does not
generate object code that can be passed on to simulators or other subsystems. However,
symbols defined in the dummy section would then be legitimate symbols for use in the
AORG or RORG program sections. For example:

DORG 0

The labels with the subsequent dummy section of instructions will be assigned values
relative to the start of the section (the instruction immediately following this directive). No
object code would be generated for this section.

An RORG directive is used after a DORG or AORG section to cause the subsequent
instructions to be relocatable object code. If no origin directives are included in the
assembly language program, all object code is relocatable starting at (referenced to) an
address of 0.

STORAGE ALLOCATION DIRECTIVES
BES
BSS

These directives reserve a block of memory (range of addresses) for data storage by
advancing the location counter by the amount specified in the expression field. Thus, the
instruction after the directive will be at an address equal to the expression value plus the
address of the instruction just before the directive.

Basic Formats:

BES Expression

BSS Expression

If a label is included in the BSS directive it is assigned the value of the location counter at
the first byte if the storage block. If the label is included in the BES directive it is
assigned the value of the location counter for the instruction after the block.

The Expression designates the number of bytes to be reserved for storage. It is a value or
an expression containing no character constants. Expressions must contain only previously
defined symbols and result in an absolute value.

7-12 	 9900 FAMILY SYSTEMS DESIGN

Program Development:
Software Commands —
Description and Formats

ASSEMBLER DIRECTIVES

Examples:

BUFF1 BES > 10

A 16 byte buffer is provided. Had the location counter contained the value 100 16 (FF16 was
the address of the previous instruction), the new value of the location counter would be
1101 , and this would be the value assigned to the symbol BUFF1. The next instruction
after the buffer would be at address 110 16 .

BUFF2 BSS 20

If the previous instruction is located at FF,,, BUFF2 will be assigned the value 100 16 , and
the next instruction will be located at 114 16 . A 20 byte area of storage with addresses 10016
through 113 16 has been reserved.

Word Boundary EVEN

This directive causes the location counter to be set to the next even address (beginning of
the next word) if it currently contains an odd address. The basic format is:

EVEN

The label is assigned the value of the location counter prior to the EVEN directive.

'11.1bk PROGRAM LISTING CONTROL DIRECTIVES

These directives control the printer, titling, and listing provided by the assembler.

Output Options

OPTION

The basic format of this directive is:
OPTION Keyword-list

No label is permitted. The keywords control the listing as follows:

74

Keyword 	Listing

XREF 	Print a cross reference listing.
OBJ 	Print a hexadecimal listing of the object code.
SYMT 	Print a symbol table with the object code.

-- Example:

OPTION XREF,SYMT
Print a cross reference listing and the symbol table with the object code.

9900 FAMILY SYSTEMS DESIGN 	 7-13

ASSEMBLER DIRECTIVES Program Development:
Software Commands —
Description and Formats

■ 7

Advance Page PAGE

This directive causes the assembly listing to continue at the top of the next page. The basic
format is:

PAGE

Page Title

This directive specifies the title to be printed at the top of each page of the assembler
listing. The basic format is:

TITL 'String'

The String is the title enclosed in single quotes. For example:

TITL 'REPORT GENERATOR'

TITL

Source Listing Control
LIST
UNL

These directives control the printing of the source listing. UNL inhibits the printing of the
source listing: LIST restores the listing. The basic formats are:

UNL

LIST

Extended Operation Definition DXOP

This directive names an extended operation. Its format is:

DXOP SYMBOL, Term

The symbol is the desired name of the extended operation. Term is the corresponding
number of the extended operation. For example:

DXOP DADD,13

defines DADD as extended operation 13. Once DADD has been so defined, it can be used
as the name of a new operation, just as if it were one of the standard instruction mnemonics.

7-14 	 9900 FAMILY SYSTEMS DESIGN

Program Development:
Software Commands —
Description and Formats

ASSEMBLER OUTPUT

Program Linkage Directives

These directives enable program modules to be assembled separately and then integrated
into an executable program.

External Definition 	 DEF
This directive makes one or more symbols available to other programs for reference. Its
basic format is:

DEF Symbol-list

Symbol-list contains the symbols to be defined by the program being assembled. For
example:

DEF ENTER, ANS

causes the assembler to include the Symbols ENTER and ANS in the object code so that
they are available to other programs. When DEF does not precede the source statements
that contain the symbols, the assembler identifies the symbols as multi-defined symbols.

External Reference
	

REF
This directive provides access to symbols defined in other programs. The basic format is:

a

REF Symbol-list

The Symbol-list contains the symbols to be included in the object code and used in the
operand fields of subsequent source statements. For example:

REF ARG 1 ,ARG2

causes the symbols ARG1 and ARG2 to be included in the object code so that the
corresponding address can be obtained from other programs.

Note: If a REF symbol is the first operand of a DATA directive causing the value of the
symbol to be in 0 absolute location, the symbol will not be linked correctly in location 0.

ASSEMBLER OUTPUT

INTRODUCTION

The types of information provided by Assemblers include:

Source Listing 	— Shows the source statements and the resulting object code.
Error Messages — Errors in the assembly language program are indicated.
Cross Reference — Summarizes the label definitions and program references.
Object Code 	— Shows the object code in a tagged record format to be passed on

to a computer or simulator for execution.

74

9900 FAMILY SYSTEMS DESIGN 	 7-15

ASSEMBLER OUTPUT Program Development:
Software Commands —
Description and Formats

SOURCE LISTING

Assemblers produce a source listing showing the source statements and the resulting object
code. A typical listing is shown in Figure 7-3.

0229
0230 	 DEMONSTRATE EXTERNAL REFERENCE LINKING
0231
0232 	 REF 	EXTR
0233 	028C 	 RORG
0234 	028C 	C820 	 MOV 	WEXTR, g EXTR

023E 	0000
0290 	028E'

0235 	0292 	28E0 	 XDR 	pEXTR, 3
0294 	0290'

0236 	8000 	 AORG 	8000
0237 	6000 	3220 	 LDCR 	g EXTR, B

9002 	0294'
0238 	8004 	0420 	 BLVVP 	g EXTR

8006 	13002
0239 	8008 	0223 	 Al 	 3, EXTR

BOOR 	B006
0240 	BOOC 	3800 	 MPY 	EllEXTR 2

BODE 	BOCA
0241 	0296 	 RORG
0242 	0296 	C820 	 MOV 	g EXTR, CalEXTR

0298 	BODE
029A 	0298'

0243 	029C 	28E0 	 XOR 	g EXTR, 3
029E 	0294'

0244 	CODO 	 AORG 	C000
0245 	C000 	3220 	 LDCR 	@EXTR, B

0002 	029E'
0246 	C004 	0420 	 BLVVP 	@EXTR

C006 	C002
0247 	0008 	0223 	 Al 	 3, EXTR

CODA 	C006
0248 	COOL 	3900 	 MPY 	g E X T R 2

CODE 	CODA

Figure 7-3. Typical Source Listing.

The first line available in a listing is the title line which will be blank unless a TITL
directive has been used. After this line, a line for each source statement is printed. For

■ 7 	example:

0018 	0156 	C820 	MOV 	@INIT + 3,@3
0158 	012B'
015A 	0003

In this case the source statement:

MOV @INIT+3,@3

produces 3 lines of object code. The source statement number 18 applies to the entire 3
line entry. Each line has its own location counter value (0156, 0158, and 015A). C820 is
the OPCODE for MOV with symbolic memory addressing.

012B' is the value for INIT +3. 0003 is for the direct address 3. The apostrophe (') after
012B indicates this address is program-relocatable. Source statements are numbered
sequentially, whether they are listed or not (listing could be prevented by using the
UNLIST directive).

7-16 	 9900 FAMILY SYSTEMS DESIGN

9900
Reference Data
	 7i

99UU
REFERENCE DATA

Program Development:
Software Commands —
Description and Formats

INSTRUCTION FORMAT

FORMAT (USE)
1 (ARITH)
2 (JUMP)
3 (LOGICAL)
4 (CRU)
5 (SHIFT)
6 (PROGRAM)
7 (CONTROL)

8 (IMMEDIATE)
9 (MPY,DIV,XOP)

0 I 1121314151 6 1 7 1 8 19110111112113114115
OP CODE 	I B I 	Tp 	I D 	I Ts 	I S

1 	SIGNED C 	ACEMENT
OP CODE D Ts S
OP CODE C Ts S

OP CODE I 	C W
OP CODE I 	Ts S
OP CODE NOT I
OP CODE NU 	vv

IMMEDIATE VALUE
OP CODE I 	D 	I 	Ts

KEY
B = BYTE INDICATOR

(1 = BYTE, 0 = WORD)
TD = D ADDR, MODIFICATION
D = DESTINATION ADDR.
Ts = ADDR. MODIFICATION

S = SOURCE ADDR.
C = XFR OR SHIFT LENGTH (COUNT)
W = WORKSPACE REGISTER NO.

= SIGNED DISPLACEMENT OF — 128 TO +127 WORDS
NU = NOT USED

TD /Ts FIELD

CODE

00 REGISTER
01: INDIRECT
10: INDEXED (S OR D 0)
10: SYMBOLIC (DIRECT, S OR D = 0)
11: INDIRECT WITH AUTO INCREMENT

EFFECTIVE ADDRESS

WP + 2 • [S OR D]
(WP + 2 • [S OR D])
(WP + 2 • [S OR D])+ (PC); PC.- PC + 2
(PC); PC 4- PC + 2
(WP + 2 • [S OR D]); INCREMENT EFF. ADDR.

MNEMONIC

Rn
*Rn
NUM (Rn)
NUM
*Rn+

STATUS REGISTER

0 1 2 3 4 5 6 7 11 12 15

L> A>

C 0

P X RESERVED INTERRUPT
MASK

0 — LOGICAL GREATER THAN
1 — ARITHMETIC GREATER THAN
2 — EQUAL/TB INDICATOR
3 — CARRY FROM MSB
4 — OVERFLOW

5 — PARITY (ODD NO. OF BITS SET)
6 — XOP IN PROGRESS

INTERRUPT MASK
F = ALL INTERRUPTS ENABLED
0 = ONLY LEVEL 0 ENABLED

7-18 9900 FAMILY SYSTEMS DESIGN

Program ueveiopment:
Software Commands —
Description and Formats

9900
REFERENCE DATA

INTERRUPTS

TRAP ADDR

TRAP ADDR + 2

WP

PC

A/W
LEVEL ID TRAP ADDR LEVEL ID 	 TRAP ADDR

0 RESET 0000 8 EXTERNAL 	0020
1 EXTERNAL 0004 9 EXTERNAL 	0024
2 EXTERNAL 0008 10 EXTERNAL 	0028
3 EXTERNAL 000C 11 EXTERNAL 	002C
4 EXTERNAL 0010 12 EXTERNAL 	0030
5 EXTERNAL 0014 13 EXTERNAL 	0034
6 EXTERNAL 0018 14 EXTERNAL 	0038
7 EXTERNAL 001C 15 EXTERNAL 	003C

NOTES: 1) XOP VECTORS 0-15 OCCUPY MEMORY LOCATIONS 0040-007C
2) LOAD VECTOR OCCUPIES MEMORY LOCATIONS FFFC-FFFF

BLWP TRANSFERS
WP. NEW W13
PC NEW W14
ST .NEWW15

RTWP TRANSFERS
CURRENT W13 -.WP
CURRENT W14 - ∎ PC
CURRENT W15 -SST

BL TRANSFER
PC.W11

XOP TRAM'
EFF. ADDR.- Nciv' W11

WP-0 NEW W13
PC. NEW W14
ST NEW W15

INSTRUCTIONS BY MNEMONIC

STATUS

1* ST6

RESULT
COMPARED

MNEMONIC OP CODE FORMAT TO ZERO AFFECTED INSTRUCTIONS
A A000 1 Y 0-4 ADD(WORD)
AB B000 1 Y 0-5 ADD(BYTE)
ABS 0740 6 Y 0-4 ABSOLUTE VALUE
Al 0220 8 Y 0-4 ADD IMLA — IATE
ANDI 0240 8 Y 0-2 AND WI: 	IATE
B 0440 6 N — BRANCH
BL 0680 6 N — BRANCH AND LINK (W11)
BLWP 0400 6 N — BRANCH LOAD WORKSPACE POINTER
C 8000 1 N 0-2 COMPARE (WORD)
CB 9000 1 N 0-2,5 COMPARE (BYTE)
CI 0280 8 N 0-2 COMPARE IMMEDIATE
CKOF 03C0 7 N — EXTERNAL CONTROL
CKON 03A0 7 N — EXTERNAL CONTROL
CLR 04C0 6 N — CLEAR OPERAND
COC

401111..
CZC

2000
2400

3
3

N
N

2
2

COMPARE ONES CORRESPONDING
COMPARE ZEROES CORRESPONDING

DEC 0600 6 Y 0-4 DECREMENT (BY ONE)
DECT 0640 6 Y 0-4 DECREMENT (BY TWO)
DIV 3C00 9 N 4 DIVIDE
IDLE 0340 7 N — COMPUTER IDLE
INC 0580 6 Y 0-4 INCREMENT (BY ONE)
INCT 05C0 6 Y 0-4 INCREMENT (BY TWO)
INV 0540 6 Y 0-2 INVERT (ONES COMPLEMENT)
JEQ 1300 2 N — JUMP EQUAL (ST2 = 1)

74

9900 FAMILY SYSTEMS DESIGN 	 7 - 19

vvuu
REFERENCE DATA

rrogram uevemprnent:

Software Commands
—Description and Formats

7

INSTRUCTIONS BY MNEMONIC

JGT 1500 2 N — JUMP GREATER THAN (ST1 = 1)
JH 1 B00 2 N — JUMP HIGH (STO = 1 AND ST2 = 0)
JHE 1400 2 N — JUMP HIGH OR EQUAL (STO OR ST2 = 1)
JL 1A00 2 N — JUMP LOW (STO AND ST2 = 0)
JLE 1200 2 N — JUMP LOW OR EQUAL (STO =0 OR ST2 =
JLT 1100 2 N — JUMP LESS THAN (ST1 AND ST2 = 0)
JMP 1000 2 N — JUMP UNCONDITIONAL
JNC 1700 2 N — JUMP NO CARRY (ST3 = 0)
JNE 1600 2 N — JUMP NOT EQUAL (ST2 = 0)
JNO 1900 2 N — JUMP NO OVERFLOW (ST4 = 0)
JOC 1800 2 N — JUMP ON CARRY (ST3 = 1)
JOP 1C00 2 N — JUMP ODD PARITY (ST5 = 1)
LDCR 3000 4 Y 0-2,5 LOAD CRU
LI 0200 8 N 0-2 LOAD IMMEDIATE
LIMI 0300 8 N 12-15 LOAD IMMEDIATE TO INTERRUPT MASK
LREX ',ell—, 7 N 12-15 EXTERNAL CONTROL
LWPI VL..L-,, 8 N — LOAD IMMEDIATE TO WORKSPACE POINTER
MOV C000 1 Y 0-2 MOVE (WORD)
MOVB D000 1 Y 0-2,5 MOVE (BYTE)
MPY 3800 9 N — MULTIPLY
NEG 0500 6 Y 0-4 NEGATE (TWO'S COMPLEMENT)
ORI 0260 8 Y 0-2 OR IMMEDIATE
RSET 0360 7 N 12-15 EXTERNAL CONTROL
RTWP 0380 7 N 0-6,12-15 RETURN WORKSPACE POINTER ,
S 6000 1 Y 0-4 SUBTRACT (WORD)
SB 7000 1 Y 0-5 SUBTRACT (BYTE)
SBO 1 D00 2 N SET CRU BIT TO ONE

_ 1E00 2 N — SET CRU BIT TO ZERO
0 0700 6 N — SET ONES

SLA 0A00 5 Y 0-4 SHIFT LEFT (ZERO FILL)
SOC E000 1 Y 0-2 SET ONES CORRESPONDING (WORD)
SOCB F000 1 Y 0-2,5 SET ONES CORRESPONDING (BYTE)
SRA 0800 5 Y 0-3 SHIFT RIGHT (MSB EXTENDED)
SRC 0800 5 Y 0-3 SHIFT RIGHT CIRCULAR
SRL 0900 5 Y 0-3 SHIFT RIGHT (LEADING ZERO FILL)
STCR 3400 4 Y 0-2,5 STORE FROM CRU
STST 02C0 8 N — STORE STATUS REGISTER
STWP 02A0 8 N — STORE WORKSPACE POINTER
SWPB 06C0 6 N — SWAP BYTES
SZC 4000 1 Y 0-2 "s" ZERnPS CORRESPONDING (WORD)
SZCB 5000 1 Y 0-2,5 - ZEI.._S CORRESPONDING (BYTE)
TB 1F00 2 N 2 TEST CRU BIT
X 0480 6 N — EXECUTE
XOP 2C00 9 N 6 EXTENDED OPERATION 	,

XOR 2800 3 Y 0-2 EXCLUSIVE OR
DCA 2C00 9 N 0-3,5,7 DECIMAL CORRECT ADD
DCS 2C00 9 N 0-3,5,7 DECIMAL CORRECT SUB
LIIM 2C00 9 N 14,15 LOAD INTERRUPT MASK

ILLEGAL OP CODES 0000-01FF;0320-033F;0780-07FF;OCOO-OFFF

7 -20 	 9900 FAMILY SYSTEMS DESIGN

Program Development:
Software Commands —
Description and Formats

9900
REFERENCE DATA

INSTRUCTIONS BY OP CODE

OP CODE MNEMONIC OP CODE MNEMONIC
0000-01FF ILLEGAL 1000 JMP
0200 LI 1100 JLT
0220 Al 1200 JLE
0240 AN DI 1300 JEQ
0260 ORI 1400 JHE
0280 LI 1500 JGT
0240 STWP 1600 JNE
0200 STST 1700 JNC
02E0 LWPI 1800 JOG
0300 LIMI 1900 JND
0320-033F ILLEGAL 1A00 JL
0340 IDLE 1B00 JH
0360 RSET 1C00 JOP
0380 RTWP 1 D00 SBO
03A0 CKON 1E00 SBZ
0300 CKOF 1F00 TB
03E0 LREX 2000 COC
0400 BWLP 2400 CZC
0440 B 2800 XOR
04811 X 2C00 XOP
Oz.__ CLR 3000 LDCR
0500 NEG 3400 STCR
0540 INV 3800 MPY
0580 INC 3000 DIV
05C0 INCT 4000 SZC
0600 DEC 5000 SZCB
0640 DECT 6000 S
C.. n, 7000 SB
Cu__ ' 'B 8000 C
0700 SETO 9000 CB
0740 ABS A000 A
0780-07FF ILLEGAL B000 AB
0800 SRA C000 MOV
0900 SRL D000 MOVB
0A00 SLA E000 SOC
OBOO SRC F000 SOCB
0000 ILLEGAL

PSEUDO-INSTRUCTIONS

MNEMONIC 	 PSEUDO-INSTRUCTIONS 	 CODE GENERATED

NOP 	 NO OPERATION 	 1000
RT 	 RETURN 	 0458

71

9900 FAMILY SYSTEMS DESIGN 	 7-21

9900
REFERENCE DATA

Program Development:
Software Commands —
Description and Formats

■ 7

PIN DESCRIPTIONS

PIN# FUNCTION PIN -4---, FUNCTION PIN 4 FUNCTION
1 VBB 23 Al 44 D3
2 Vcc 24 AO 45 D4
3 WAIT 25 04 46 D5
4 LOAD 26 Vss 47 D6
5 HOLDA 27 VDD 48 D7
6 RESET 28 93 49 D8
7 IAO 29 DBIN 50 D9
8 4p1 30 CRUOUT 51 D10
9 42 31 CRUIN 52 Dll

10 A14 32 INTREQ 53 D12
11 A13 33 IC3 54 D13
12 Al2 34 IC2 55 D14
13 All 35 IC1 56 D15
14 A10 36 ICO 57 NC
15 A9 37 NC 58 NC
16 A8 38 NC 59 NC
17 A7 39 NC 60 CRUCLK
18 A6 40 NC 61 WE
19 A5 41 DO 62 READY
20 A4 42 D1 63 MEMEN
21 A3 43 D2 64 HOLD
22 A2

ASSEMBLER DIRECTIVES

MNEMONIC 	 DIRECTIVE
AORG 	 ABSOLUTE ORIGIN
BES 	 BLOCK ENDING WITH SYMBOL
BSS 	 BLOCK STARTING WITH SYMBOL
BYTE 	 INITIALIZE BYTE
DATA 	 INITIALIZE WORD
DEF 	 EXTERNAL DEFINITION
DORG 	 DUMMY ORIGIN
DXOP 	 DEFINE EXTENDED OPERATION
END 	 PROGRAM END
EQU 	 DEFINITE ASSEMBLY — TIME CONSTANT
EVEN 	 WORD BOUNDARY
IDT 	 PROGRAM IDENTIFIER
LIST 	 LIST SOURCE
PAGE 	 PAGE EJECT
REF 	 EXTERNAL REFERENCE
RORG 	 RELOCATABLE ORIGIN
TEXT 	 INITIALIZE TEXT
TITL 	 PAGE TITLE
UNL 	 NO SOURCE LIST

7 -22 	 9900 FAMILY SYSTEMS DESIGN

Program Development:
Software Commands —
Description and Formats

9900
REFERENCE DATA

USASCII/HOLLERITH CHARACTER CODE

CHAR.
USASCII

(HEXADECIMAL) HOLLERITH
USASCII

CHAR. 	(HEXADECIMAL) 	HOLLERITH
NUL 00 3 33 3
SOH 01 4 34 4
STX 02 5 35 5
ETX 03 6 36 6
EOT 04 7 37 7
ENO 05 8 38 8
ACK 06 9 39 9
BEL 07 3A 2-8
BS 08 3B 11-6-8
HT 09 < 3C 12-4-8
LF OA = 3D 6-8
VT OB > 3E 0-6-8
FF OC ? 3F 0-7-8
CR OD 0? 40 4-8
SO OE A/a 41/61 12-1
SI OF B/b 42/62 12-2
DLE 10 C/c 43/63 12-3
DC1 11 D/d 44/64 12-4
DC2 12 E/e 45/64 12-5
DC3 13 F/f 46/66 12-6
DC4 14 G/g 47/67 12-7
NAK 15 H /h 48/68 12-8
SYN 16 1/i 49/69 12-9
ETB 17 J/j 4A/ 	,n, 11-1

CAN 18 K/k 4B, • - 11-2
EM 19 L/I 4C/6C 11-3
SUB 1A M/m 4D/6D 11-4
• 	c; 1B N /n 4E/6E 11-5

1C 0/o 4F/6F 11-6
GS 1D P/p 50/70 11-7
RS 1E 0/q 51/71 11-8
US 1F R/r 52/72 11-9
SPACE 20 BLANK S/s 53/73 0-2
1 21 11-2-8 T/t 54/74 0-3

22 7-8 U/u 55/75 0-4
23 3-8 V/v 56/76 0-5
$ 24 11-3-8 W/w 57/77 0-6

25 0-4-8 X/x 58/78 0-7
& 26 12 Y/y 59/79 0-8

27 5-8 Z/z CA /7A 0-9
(28 12-5-8 [12-2-8
) 29 11-5-8 x 5C

2A 11-4-8] 5D 12-7-8
+ 2B 12 - 6 - 8 A 5E 11-7-8

2C 0-3-8
--

SF 0-5-8
2D 11 60
2E 12-3-8 { 7B

/ 2F 0-1 > 7C
0 30 0 } 7D
1 31 1 7E
2 32 2 DEL 7F
PUNCH IN CARD ROWS

71

9900 FAMILY SYSTEMS DESIGN 	 7-23

9900
REFERENCE DATA

Program Development:
Software Commands —
Description and Formats

HEX-DECIMAL TABLE

EVEN BYTE ODD BYTE
HEX DEC HEX DEC HEX DEC HEX 	DEC

0 0 0 0 0
1 4,096 1 256 1 16
2 8,192 2 512 2 32
3 12,288 3 768 3 48

CO

71- u
7
 (

9
 h

- C
O

0
)
0

 	
C

V
 C

O

.71- 0
)

C
O

 71- L
O

 (
0

 N
- C

O
 0

-)
 <

 0
2

1
0

0
 W

 L
L

4 16,384 4 1,024 4 64
5 20,480 5 1,280 5 80
6 24,576 6 1,536 6 96
7 28,672 7 1,792 7 112
8 32,766 8 2,048 8 128
9 36,864 9 2,304 9 144
A 40,960 A 2,560 A 160
B 45,066 B 2,816 B 176
C 49,152 C 3,072 C 192
D 53,248 D 3,328 D 208
E 57,344 E 3,584 E 224
F 61,440 F 3,840 F 240

OBJECT RECORD FORMAT AND CODE

TAG 	1ST FIELD 	2ND FIELD (WHEN REQUIRED)

L 6 OR 8 CHARACTERS (USASCII)
(HEX USASCII)

(HEX USASCII)
4 CHARACTERS
1 CHARACTER

TAG FIRST FIELD SECOND FIELD MEANING

0 LENGTH OF ALL PROGRAM ID PROGRAM START
RELOCATABLE CODE (8-CHARACTER)

1 ADDRESS (NOT USED) ABSOLUTE ENTRY ADDRESS
2 ADDRESS (NOT USED) RELOCATABLE ENTRY ADDRESS
3 LOCATION OF LAST 6 CHARACTER EXTERNAL REFERENCE LAST USED

APPEARANCE OF SYMBOL SYMBOL IN RELOCATABLE CODE
4 LOCATION OF LAST 6 CHARACTER EXTERNAL REFERENCE LAST USED

APPEARANCE OF SYMBOL SYMBOL IN ABSOLUTE CODE
5 LOCATION 6 CHARACTER RELOCATABLE EXTERNAL DEFINITION

SYMBOL
6 LOCATION 6 CHARACTER ABSOLUTE EXTERNAL DEFINITION

SYMBOL
7 CHECKSUM FOR (NOT USED) CHECKSUM

CURRENT RECORD
8 ANY VALUE (NOT USED) IGNORE CHECKSUM VALUE
9 LOAD ADDRESS (NOT USED) ABSOLUTE LOAD ADDRESS
A LOAD SDDRESS (NOT USED) RELOCATABLE LOAD ADDRESS
B DATA (NOT USED) ABSOLUTE DATA
C DATA (NOT USED) RELOCATABLE DATA
D LOAD BIAS (NOT USED) LOAD BIAS OR OFFSET

(NOT A PART OF ASSEMBLER OUTPUT)
E ILLEGAL
F (NOT USED) (NOT USED) END OF RECORD

7-24 	 9900 FAMILY SYSTEMS DESIGN

TM990/402
Line-by-Line
Assembler
User's Guide

74

O D

O D

U41 U45

NOT

REQUIRED
LBLA

U42 U38

U40 U44

TIBUG

MONITOR
- LBLA

U43 U39

LBLA

TIBUG

MONITOR

TIBUG

MONITOR O

TM 990/402 LINE-BY-LINE
ASSEMBLER USER'S GUIDE

Program Development:
Software Commands—
Description and Formats

GENERAL

The TM 990/402 Line-By-Line Assembler (LBLA) is a standalone program that
assembles into object code the 69 instructions used by the TM 990/100M/101M/180M
microcomputers. Comments can be a part of the source statement; however, assembler
directives are not recognized. Assembler TM 990/402-1 consists of two EPROM's and
supports the TM 990/100M microcomputer. TM 990/402-2 consists of one EPROM
and supports the TM 990/180M microcomputer.

INSTALLATION

Remove the TMS 2708 chip(s) from the package and install as follows (see Figure 1):

(1) Turn off power to the TM 990/1XXM microcomputer.

(2) Place the chip(s) into the proper socket(s) as shown in Figure I. The shaded
components in Figure 1 denote the LBLA EPROM's correctly placed in their sockets.
The corresponding socket number (UXX number) is marked on the EPROM.

NOTES

1. Place the TMS 2708(s) into the socket(s) with pin 1 in the lower left corner as
denoted by a 1 on the board and on the EPROM. Be careful to prevent
bending of the pins.

2. Do not remove EPROM's containing the monitor as shown in Figure 1. The
monitor is used by the assembler.

(3) Verify proper positioning in the sockets. Apply power to the microcomputer board.

0

la) ON TM 990/100M

IW ON TM 990/180M

Figure 1. Placement of TMS 2708 Eprom's

7-26 9900 FAMILY SYSTEMS DESIGN

MEMORY ADDRESS OF ASSEMBLED MACHINE CODE

MACHINE CODE ASSEMBLED BY ASSEMBLER

- INSTRUCTION MNEMONIC

ONE SPACE (MAXIMUM)

OPERANDS

Program Development:
Software Commands—
Description and Formats

TM 990/402 LINE-BY-LINE
ASSEMBLER USER'S GUIDE

OPERATION

SETUP

NOTE
The examples in this guide use memory addresses obtainable in RAM on the TM 990/
100M microcomputer. To exemplify the TM 990/180M addressing scheme, the reader
should substitute a 3 for the F in the most significant digit (left most) of a four-digit
memory address in the following examples (e.g., 3EE0 16 for FEE016)•

• With the Line-By-Line Assembler EPROMs installed, call up the monitor by pressing
the RESET switch in the upper left corner of the board and then pressing the A key at

the terminal.

• Invoke the R keyboard command and set the Program Counter (PC) to 09E6 16 . This is
the memory address entry point for the Line-By-Line Assembler.

• Invoke the E (execute) command. The assembler will execute and print the memory
address (M.A.) FE0016 for the TM 990/100 or 3E00, 6 for the TM 990/180M. The
printhead will space to the assembly language opcode input column and wait for input
from the keyboard.

?R
W =OBA4
P=000F 	9E6
?E
FEUD

LE3L A ENTRY ADDRESS

INPUTS To ASSEMBLER

The Line-By-Line Assembler accepts assembly language inputs from a terminal. As each
instruction is input, the assembler interprets it, places the resulting machine code in an
absolute address, and prints the machine code (in hexadecimal) next to its absolute address:

AT LEAST ONE SPACE (MINIMUM)
COMMENTS

FE00 02E0 LWPI >FE80 SET UP WORKSPACE ADDRESS
FE02 FE80
FE04 0200 LI R0,10 SET UP COUNTER VALUE
FED6 000A
FE08 0201 LI R1,>FEA0 ADDRESS OF VALUES IN R1
FEOA FEAO
FEOC 0202 LI R2,>FEBO ADDRESS OF STORAGE AREA IN R2
FEOE FEBO
FE10 CCB1 MDV ■ R1+,*R2+ MOVE VALUES TO STORAGE AREA
FE12 0600 DEC RO DECREMENT COUNTER
FE14 1301 JEQ >FE18 EXIT IF COUNTER = ZERO
FE16 10FC JMP >FE10 LOOP BACK UNTIL 10 VALUES MOVED
FE18

9900 FAMILY SYSTEMS DESIGN 	 7-27

TM 990/402 LINE-BY-LINE
ASSEMBLER USER'S GUIDE

Program Development:
Software Commands—
Description and Formats

Use only one space between the mnemonic and the operand. If you use the comment field,
use at least one space between the operand and comment. If no comment is used, complete
the instruction with a space and carriage return. If a comment is used, only a carriage
return is required.
No loader tags are created; code is loaded in contiguous memory addresses by the
assembler. The location can be changed as desired (explained in paragraph 3.2.2).
Labels cannot be used. Addressing is by byte displacement (jump instructions) or by
absolute memory address.

NOTE
Be aware that the workspace for the TIBUG monitor begins in RAM at address FFB0,„
for the TM 990/100M and begins at address 3FB0 16 for the TM 990/180M.
Understand that assembled object code should not be entered at or above these
addresses.

Program Preparation

Set up your program using flow charts with code written on a coding pad. Do not use
assembler directives.

Changing Absolute Load Address

Code is located at the address written on the assembler output. When initialized, the
assembler loads code contiguously starting at M.A. FE00, 6 (3E0016 for TM 990/180M).
This address can be changed at any time during assembly by typing a slash (/) followed by
the desired M.A.:

FE80 8081 C R1 ,R2 COMPARE VALUES
FE82 1301 JEQ >FE86 IF EQUAL, SKIP ERROR ROUTINE
FE84 06A0 BL p>FF20 OTHERWISE DO ERROR ROUTINE
FE86 FF20
FE88 /FF20 CHANGE ADDRESS

FF20 2FAO XOP @>FF26,14 SEND ERROR MESSAGE (See TIBUG Monitor)
FF22 FF26
FF24 04513 B ♦ R11 RETURN TO CALLING PROGRAM
FF26 OAOD +>OAOD
FF28 4552 $ERROR FOUND
FF2A 524F
FF2C 5220
FF2E 464F
FF30 554E
FF32 4420
FF34 0000 +0000
FF36 /FE86 CHANGE ADDRESS

FE86

Note that this is similar to using an AORG (absolute origin) 990 assembler directive.

7 -28 	 9900 FAMILY SYSTEMS DESIGN

Program Development:
Software Commands—
Description and Formats

TM 990/402 LINE-BY-LINE
ASSEMBLER USER'S GUIDE

Entering Instructions

Any of the 69 instructions applicable to the TM 990/ 1XXM microcomputers can be
interpreted by the Line-By-Line Assembler. The following apply:

(1) Place one space between instruction mnemonic and operand.

(2) Terminate entire instruction with a space and a carriage return. Lines with comments
need only a carriage return. Character strings require two carriage returns.

(3) Do not use labels; addressing is through byte displacement (jump instructions) or
absolute addresses:

FE8C 1607 JNE $ +16
FC8E 10E8 JMP >FE60
FE90 C8A2 MOV @>FD2O(R2), @>FE10(R2)
FE92 FD20
FE94 FE10
FE96

(4) Register numbers are in decimal and can be predefined (preceded by an R):

FE96 	020C 	L112,>000
FE98 ODOO
FE9A 	0200 	LI R13,>FEFF
FE9C 	FFFF
FE9E

(5) Jump instruction operand can be $ + n, $ — n, or > M where n is a decimal value of
bytes (+ 256_ 	— 254) and M is a memory address in hexadecimal. The dollar sign
must be followed by a sign and number (JMP $ is not allowed).

FE20 1304 JEQ 5+10 EXIT

FE22 1304 JEQ $+ >A EXIT
FE24 1304 JEQ $+ 0/01010 EXIT
FE26 1304 JEQ > FE30 EXIT
FE28 1OFF JMP 5+0 LOOP AT THIS ADDRESS (>FE28)
FE2A 10FF JMP 5-0 LOOP AT THIS ADDRESS

(6) Absolute numerical values can be in binary, decimal, or hexadecimal.

• Binary values are preceded by a percent sign (%). One to 16 ones and zeroes can
follow; unspecified bits on the left will be zero filled:

FE58 0204 LI R4,%1 0101010 >AA IN R4
FE5A 00AA
FE5C 000A + 1%1010 DATA STATEMENT
FE5E FFF6 —%1 010 DATA STATEMENT
FEED

9900 FAMILY SYSTEMS DESIGN 	 7 - 29

TM 990/402 LINE-BY-LINE
ASSEMBLER USER'S GUIDE

Program Development:
Software Commands—
Description and Formats

• Decimal values have no prefix in an operand:

FE6C 0205 LI R5,100 LOAD COUNTER
FE6E 0064
FE70 0206 LI R6,32768 SET LIMIT
FE72 8000
FE74 8000 +32768
FE76 8000 —32768
FE78 7FFF +32767
FE7A 8001 —32767
FE7C FFFF —1
FETE

• Hexadecimal values are preceded by the greater-than sign (>):

FETE 02E0 LWPI> FFOO SET WP ADDRESS
FE80 FF00
FE82 FFFF +>FFFF DATA STATEMENT
FE84 0001 4> FFFF DATA STATEMENT
FE86

NOTE
In operands, absolute value must be unsigned values only. However, there is a
method for using the assembler to compute and assemble a negative value; this
method is especially useful with the immediate instructions (e.g., AI, CI, LI). Enter
the instruction using the negative value. The assembled value will be all zeroes in
the last assembled word. Use the slash command (paragraph 3.2.2) to assemble at
the previous address, then enter the negative value as a data statement as shown in
the following example:

FE1A 	0201 	LI R1,—>100
FE1C 0000
FE1E 	 /FE1C
FE1C FF00 	—> 100
FE1E

-.- USE SIGNED OPERAND

SIGNED NUMBER ASSEMBLIES AS 0000 (IN M.A.>FE1C)

SET OBJECT LOAD ADDRESS TO PREVIOUS ADDRESS

- >100(>FF00) NOW IN M.A.>FE1C

(7) Absolute addresses are used instead of labels:

FEAO C820 MOV @>FE10,@> FED° 	 MOVE TO STORAGE
FEA2 	FE10
FEA4 FEDO
FEA6 16FC JNE 	>FEA0 	 LOOP BACK TO MOVE INSTRUCTION
FEAR

7 -30 	 9900 FAMILY SYSTEMS DESIGN

Program Development:
Software Commands—
Description and Formats

TM 990/402 LINE-BY-LINE
ASSEMBLER USER'S GUIDE

(8) Character strings are preceded by a dollar sign and are terminated with two carriage
returns.

FF10 4142 SABCD 	1233
FF12 	4344
FF14 	2020
FF16 	2031
FF18 	3233
FF1A 3320 UNUSED RIGHT BYTE FILLED WITH>20 (SPACE)

(9) Character strings of one or two characters can be designated by encoding the string in
quotes. If not part of an operand, a plus or minus sign must precede the value. If the
string is larger than two characters, the last two characters are interpreted.

FEAA 3132 +'12' CHARACTERS ONE AND TWO
FEAC 000C +12 VALUE OF POSITIVE TWELVE
FEAE FFF4 —12 VALUE OF NEGATIVE TWELVE
FEBO 0000 + + FOLLOWED BY CTRL KEY AND NULL KEY PRESSED
FEB2 0202 LIR2, 'ABM' , ASSEMBLED LAST TWO CHARACTERS [C AND DJ
FEB4 4344
FEB6 0202 LI R2, 'E' CHARACTER E IN RIGHT BYTE
FEBB 0045
FEBA 0202 LI R2,:-E VALUE >E IN RIGHT BYTE
FEBC 000E
FEBE

(10) Signed numerical values of up to 16 bits can be designated by preceding the value with
a plus or minus sign. If more than 16 bits are entered in binary or hexadecimal, the last
16 bits entered are used. If more than 16 bits are entered in decimal, the assembled
value is the same as the remainder had the number between divided by 2" (65,53610).

FE18 	DOFF 	+ 0/0111111110000000011111111
FE1A 	FF01 	— 0/0111111110000000011111111
FE1C AAEE +> AAAAAAEE
FE1E 8000 	+32768
FE20 8001 	+32769
FE22 0000 +65536
FE24 	FFFF 	+131071
FE26 0000 	+131072
FE28 8000 —32768
FE2A 8001 	—32767
FE2C 7FFF 	—32769
FE2E

71

9900 FAMILY SYSTEMS DESIGN 	 7-31

TM 990/402 LINE-BY-LINE
ASSEMBLER USER'S GUIDE

Program Development:
Software Commands—
Description and Formats

ERRORS

When the assembler detects an error, it types an error symbol and readies the terminal for
re-entering data at the same memory address. The following error symbols are used:

• D (Displacement error). The jump instruction destination is more than + 256 or — 254
bytes away.

FF38 	 JNC 	8+300■ D
FF38 	 JNC 	>F000■ D
FF38 	170B JNC 	>FF50
FF3A

• R (Range error). The operand is out of range for its field:

FF30 	 LI 	R44,•R
FE30 	0204 	LI 	R4,200
FF32 0008

• S (Syntax error). The instruction syntax was incorrect:

FF34 	 MOZ■ S
	

INCORRECT MNEMONICS
FF34 	 MOSS
FF34 C802 MOV R2, g>FE90
FF36 	FE90

EXITING TO THE MONITOR

Return control to monitor by pressing the escape (ESC) key.

PSEUDO-INSTRUCTIONS

The TM 990/402 also interprets two pseudo-instructions. These pseudo-instructions are
not additional instructions but actually are additional mnemonics that conveniently
represent two members of the instruction set:

• The NOP mnemonic can be used in place of a JMP $ + 2 instruction which is
essentially a no-op (no operation). This can be used to replace an existing instruction in
memory, or it can be included in code to force additional execution time in a routine.
Both NOP and JMP $ + 2 assemble to the machine code 100016.

• The RT mnemonic can be used in place of a B *R11 instruction which is a common
return from a branch and link (BL) subroutine. Both RT and B *R11 assemble to the
machine code 045B16.

Note the following examples:

FE00 1000 JMP 8+2 	 JUMP TO NEXT INSTRUCTION
FE02 1000 NOP 	 ALSO ASSEMBLES TO >1000
FE04 0458 B 4.811 	 RETURN COMMAND
FE06 045B RT 	 ALSO A RETURN COMMAND

7 -32 	 9900 FAMILY SYSTEMS DESIGN

TIBUG
Monitor

71

TIBUG
N/IONITOR

Program Development:
Software Commands—
Description and Formats

■ 7

TIBUG COMMANDS

INPUT RESULTS

c
o

 0
 a
 L

u
 u_

 i
 _
i 2

 c
c
 cf)

 1

Execute under Breakpoint
CRU Inspect/Change
Dump Memory to Cassette/Paper Tape
Execute
Find Word/Byte in Memory
Hex Arithmetic
Load Memory from Cassette/Paper Tape
Memory Inspect/Change
Inspect/Change User WP, PC, and ST Registers
Execute in Step Mode
1200 Baud Terminal
Inspect/Change Current User Workspace

COMMAND SYNTAX CONVENTIONS

CONVENTION
SYMBOL EXPLANATION

<> Items to be supplied by the user. The term within the angle brackets is a generic
term.

[] Optional Item — May be included or omitted at the user's discretion. Items not
included in brackets are required.

{ 	} One of several optional items must be chosen.

(CR) Carriage Return

A Space Bar

LF Line Feed
R or Rn Register (n = 0 to 15)

WP Current User Workspace Pointer contents

PC Current User Program Counter contents

ST Current User Status Register contents

7-34 9900 FAMILY SYSTEMS DESIGN

Program Development:
Software Commands—
Description and Formats

TIBUG
MONITOR

USER ACCESSIBLE UTILITIES

XOP FUNCTION

8 Write 1 Hexadecimal Charter to Terminal
9 Read Hexadecimal Word from Terminal

10 Write 4 Hexadecimal Characters to Terminal
11 Echo Character
12 Write 1 Character to Terminal
13 Read 1 Character from Terminal
14 Write Message to Terminal

NOTE

All characters are in ASCII code.

TIBUG ERROR MESSAGES

ERROR CONDITION

0 Invalid tag detected by the loader.
1 Checksum error detected by the loader.
2 Invalid termination character detected.
3 Null input field detected by the dump routine.

4 Invalid command entered.

7♦

9900 FAMILY SYSTEMS DESIGN 7_35

TIBUG
MONITOR

Program Development:
Software Commands—
Description and Formats

COMMAND 	 SYNTAX

Execute under Breakpoint (B) 	 B<address> <(CR)>
CRU Inspect/Change (C) 	 C<base address>{ }<count><(CR)>

Dump Memory to Cassette/Paper Tape (D)

FMONITOR PROW)

D<start address>{n } <stop address>{ }<entry address>{ n }IDT = <name>< A >

Execute Command (E)

Find Command (F) 	 F<start address>{/,\ }<stop
address> }<value>{(R))

Hexadecimal Arithmetic (H) 	 H<number 1> {'\}<number 2><(CR)>

Load Memory from Cassette or Paper Tape (L) L< bias> <(CR)>

Memory Inspect/Change, Memory Dump (M) Memory Inspect/Change Syntax
M<address> <(CR)>

Memory Dump Syntax
M<start address>{ }<stop
address> <(CR)>

Inspect/Change User WP,PC, and ST 	R<(CR)>
Registers (R)

Execute In Single Step Mode (S)

TI 733 ASR Baud Rate (T)

Inspect/Change User Workspace (W) 	W [Register Number] <(CR)>

7-36 	 9900 FAMILY SYSTEMS DESIGN

TM 990/302
Software Development Board

71

TM990/ 302 SOFTWARE
DEVELOPMENT BOARD

Program Development:
Software Commands —
Description and Formats

EPROM's which may be programmed by the '302

2708

2716

2516

2532

9940

SOFTWARE COMPONENTS

Access Command

Executive 	 (CR)

Text Editor 	 TE

Symbolic Assembler 	 SA

Debug Package 	 DP

EPROM Programmer 	 EP

Relocating Loader 	 RL

EIA Interface 	 El

I/O Scheduler/Handler 	 SR

LUNO ASSIGNMENTS

Device 	 Logical Unit No.

Dummy 	 0

Terminal (LOG) 	 1

Audio Cassette 1 	 2

Audio Cassette 2 	 3
Second EIA Connector 	 4
Memory 	 5

7-38 	 9900 FAMILY SYSTEMS DESIGN

Program Development:
Software Commands —
Description and Formats

TM990/ 302 SOFTWARE
DEVELOPMENT BOARD

SOFTWARE COMPONENT CALLS

Text Editor

Symbolic Assembler

Debug Package

EPROM Programmer

Relocating Loader

Set Baud Rate

Escape

TE16(input device),(output device)

SA0(source device), (object device), (listing device)

DPO(output device)

EP

RLo(input device)

SIRki(nnnn)

ESC 	(return to executive)

TEXT EDITOR COMMANDS

Delete ;:nes n thru m

Insert at line n with optional auto increment by m

K
	

Keep buffer and print new top line in the buffer

G
	

Get buffer and print new bottom line in the buffer

P
	

Print lines n thru m

Flush the input file until end of input file and return to executive

Resequence input to output, n is initialized line # and m is the increment

COMMAND

Delete Lines n thru m (Rn,m)

Insert After Line n with optional

auto increment by m (In,m)

Get Buffer (G)

Keep Buffer (K)

Print lines n thru m (Pn,m)

Quit Text Editor (0)

Resequence Output (Rn,m)

SYNTAX

D (starting line #)[,(ending line 4)]

I (line number after which new

data is entered) [,(auto increment value)]

G

K

P (first line #to be printed)

[,(last line # to be printed)]

R (initial line number) [,(increment value)]

74

9900 FAMILY SYSTEMS DESIGN 7-39

M990/302 SOFTWARE
DEVELOPMENT BOARD

Program Development:
Software Commands —
Description and Formats

ASSEMBLER DIRECTIVES

AORG

BSS

BYTE

DXOP

END

EQU

DATA
EVEN

IDT

TEXT

[label]p3AORGI6(value)16[comment]

[label]pBSSO(value)kgcomment]

[labeyBYTE0(value),(value),(value),....Kcomment]

DabellzIDX0P)6(symbol),(value)16[comment]

[labei]lENDO(symbol)0[comment]

[label]l6EQUIb(expression)16[comment]

DabelPiDATA16(exp),(exp),..16[comment]
[labelpEVENO[comment]

DabeIMIDTb(string)16[comment]

[labeRITEXT0(—),'string'0[comment)

DEBUG Package

Verb
	

Command

SB
	

Set Software Breakpoint and Execute

IM
	

Inspect/Change Memory
IC
	

Inspect/Change CRU
IR
	

Inspect/Change MPU Registers
ST
	

Set Software Trace
RU
	

Single Step for 1 or more instructions with or without trace
DM
	

Dump Memory

DEBUG COMMANDS

Set Breakpoint and Execute

Inspect/Change Memory
Inspect/Change CRU

Inspect/Change MPU registers
Set Software Trace

Run 1 or more Instructions

Dump Memory

SBkaddress)
IM)6(address)

ICO(CRU base addr.)(no. of bits)

IR
STO(0 or 1)

RUI6(no. of instructions in decimal)

DM0(starting addr.),(ending addr.)

7-40 9900 FAMILY SYSTEMS DESIGN

Program Development:
Software Commands —
Description and Formats

TM990/ 302 SOFTWARE
DEVELOPMENT BOARD

EPROM PROGRAMMING CRU ASSIGNMENTS

CRU BASE ADDRESS16 INPUT/OUTPUT 	 FUNCTION

1710 	 I/O 	 EPROM DATA BIT 0

1712 	 I/O

1714 	 I/O

1716 	 I/O

1718 	 I/O

171A 	 I/O

171C

171E 	 I/O 	 EPROM DATA BIT 7

1720 	 0 	 EPROM ADDRESS LSB

1722 	 0
1724 	 0
1726 	 0

1728 	 0
172A 	 0

172C 	 0

172E 	 0

1730 	 0

1732 	 0

1734 	 0

1736 	 0

1738 	 0 	 EPROM ADDRESS MSB

173A 	 O 	 EPROM PROGRAM ENABLE

173E 	 0 	 EPROM PROGRAMMING PULSE 	71

EPROM PROGRAMMING RESPONSES

PP = Program EPROM
RE = Read EPROM to Memory

CE = Compare EPROM to Memory

Memory Bounds: MEM BDS? (start addr.),(stop addr.)
EPROM Start addr: EPROM START? (start addr.)

Programming Mode: MODE? P(parallel) or I(in line)

Starting Byte: ST byte ? (0 or 1 if P above)

9900 FAMILY SYSTEMS DESIGN 	 7-41

TM990/302 SOFTWARE
DEVELOPMENT BOARD

Program Development:
Software Commands —
Description and Formats

PREDEFINED CRU ADDRESSES FOR I/O DEVICES

Device CRU Address

Users Terminal (9902) 80 16

Timer (9901) 10016
EIA Interface (9902) 18016
Recorder 1 Forward 170016
Recorder 2 Forward/9940 Flag 1 170216
Recorder 2 Write Data/9940 Flag 2 170416
Recorder 1 Read Data/9940 Flag 3 170616
Personality Card Code Bit 0 170816
Personality Card Code Bit 1 170A 16

Personality Card Code Bit 2 170016
Switch Code Bit 170E16
EPROM Data 1710 16 — 171E16
EPROM Address 1 720 16 — 1 73816
EPROM Program Enable 173A16
EPROM Programming Pulse 1730 16

7-42 	 9900 FAMILY SYSTEMS DESIGN

TXDS Commands
for FS 990 Software
Development System

7•

TXDS SUPPORT MANUALS Program Development:
Software Commands —
Description and Formats

Examples of manuals available in support of the TXDS System:

TXDS PROGRAMMER'S GUIDE (#946258-9701)

This manual enables the user to employ the Terminal Executive Development System
(TXDS) in conjunction with the TX990 Operating System and the Model 990/4 and
990/10 Computer System hardware configuration to develop, improve, change, or maintain
(1) the user's customized Operating System and the user's applications programs or (2) any
other type of user-produced programs (e.g., the user's own supervisor call processors or the
user's own utility programs). It is assumed the reader is familiar with the Model 990
Computer System assembly language and the concepts of the TX990 Operating System.

The sections and appendixes of this manual are organized as follows:

I 	Introduction — Provides a general description of the TXDS utility programs and
their capabilities. Also includes a description of the control functions of the TXDS
Control Program.

II 	Loading and Executing a Program — Provides a step-by-step procedure for loading
and executing (1) each of the TXDS and TX990 Operating System utility
programs and (2) a user program. Also describes the TXDS Control Program and
how to correctly respond to its prompts.

III Verification of Operation — Provides several short step-by-step procedures to
checkout proper operation of the TXDS software.

IV Creating and Editing Program Source Code — Describes the capabilities of the
TXEDIT utility program and how the user can employ those capabilities to edit or
generate the text of source programs and object programs.

V 	Assembling Source Programs — Describes how the user can employ the TXMIRA
utility program to assemble source files (i.e., source code programs).

VI TX990 Cross Reference (TXXREF) Utility Program — Describes how the user
can employ the TXXREF utility program to produce a listing of each user-defined
symbol in a 990 assembly source program along with the line numbers on which
the symbol is defined and all of the line numbers on which the symbol is
referenced.

VII Linking Object Modules — Describes how the user can employ the TXDS Linker
utility program to form a single object module from a set of independently
assembled object modules (in the form of object code or compressed object code.)

VIII TXDS Copy Concatenate (TXCCAT) Utility Program — Describes how the user
can employ the TXCCAT utility program to copy one to three files to a single
output file.

IX TXDS Standalone Debug Monitor (TXDBUG) Utility Program — Describes how
the user can employ the TXDBUG utility program to debug programs which have
been designed to operate in a "standalone" situation without support of an
operating system.

7-44 	 9900 FAMILY SYSTEMS DESIGN

Program Development:
Software Commands —
Description and Formats

TXDS SUPPORT MANUALS

X TXDS PROM (TXPROM) Programmer Utility Program — Describes how the
user can employ the TXPROM programming utility program to control the
Programming Module (PROM) hardware to make customized ROMs containing
user-created data or programs.

XI TXDS BNPF/High Low (BNPFHL) Dump Utility Program — Describes how
the user can employ the BNPFHL utility program to produce a BNPF or high/
low file format.

XII TXDS IBM Diskette Conversion Utility (IBMUTL) Program — Describes how
the user can employ the IBMUTL utility program to transfer standard IBM-
formatted diskette datasets to TX990 Operating System files and to transfer
TX990 Operating System files to standard IBM-formatted diskette datasets.

XIII TXDS Assign and Release LUNO Utility Program — Describes how the operator
can assign and release LUNOs in systems which do not include OCR

A 	Glossary — Clarifies selected words used in this TX990 Operating System
Programmer's Guide.

B 	Compressed Object Code Format — Describes the compressed object code format.

C 	Task State Codes — Lists and describes the task state codes.

D 	I/O Error Codes — List and describes the I/O error codes available to the user,
when coding a program, for printout or display on a terminal device.

The following documents contain additional information related to the TX990 Operating
System and are referenced herein this manual:

TITLE PART NUMBER

Model 990 Computer TX990 Operating System Programmer's Guide 946259-9701

Model 990 Computer TMS9900 Microprocessor Assembly Language Programmer's Guide 943441 -9701

Model 990 Computer Model FD800 Floppy Disc System Installation and Operation 945253 -9701

Model 990 Computer Model 913 CRT Display Terminal Installation and Operation 943457 -9701

Model 990 Computer Model 911 Video Display Terminal Installation and Operation 943423 -9701

Model 990 Computer Model 733 ASR / KSR Data Terminal Installation and Operation 945259 -9701

Model 990 Computer Model 804 Card Reader Installation and Operation 945262 -9701

Model 990 Computer Models 306 and 588 Line Printers Installation and Operation 945261 -9701

Model 990 Computer PROM Programming Module Installation and Operation 945258 -9701

990 Computer Family Systems Handbook 945250-9701

Model 990 Computer Communications Systems Installation and Operation 945409 -9701

9900 FAMILY SYSTEMS DESIGN 	 7-45

TXDS COMMANDS FOR FS 990
SOFTWARE DEVELOPMENT SYSTEM

Program Development:
Software Commands —
Description and Formats

List of Commands and Special Keys/Characters

COMMAND SYNTAX 	 DESCRIPTION

SETUP COMMANDS

SL 	 Start Line Numbers (SL) command causes line numbers to
be printed with each line of text.

SN 	 Stop Line Numbers (SN) comman causes line numbers not
to be printed.

SP 	 Set Print Margin (SP) command sets the right boundary for
print display.

SM 	 Set Margin (SM) for Find command sets the left and right
boundaries for the Find command.

ST 	 Set Tabs (ST) command sets up to five tab stops.

PRINTER-MOVEMENT COMMANDS

D Down (D) command moves the pointer down toward the
bottom of the buffer.

U Up (U) command moves the pointer up towards the first line
in the buffer.

T 	 Top (T) command moves the pointer to the first line in the
buffer.

B Bottom (B) command moves the pointer to the last line in the
buffer.

EDIT COMMANDS

C 	 Change (C) command removes lines from the buffer and
inserts new ones in their place. The new lines are input from
the terminal.

Insert (I) command takes input from the terminal and places
the new lines into the buffer.

M 	 Move (M) command moves lines from one place in the buffer
to another.

R 	 Remove (R) command deletes lines from the buffer.

F 	 Find string (F) command searches for the first occurrence of
a character string in a line and replaces it with another string
of characters.

PRINT COMMANDS

L 	 Limits (L) command causes the first line and the last line to
be displayed.

Print (P) command displays lines of text.

7-46 	 9900 FAMILY SYSTEMS DESIGN

Program Development:
Software Commands —
Description and Formats

TXDS COMMANDS FOR FS 990
SOFTWARE DEVELOPMENT SYSTEM

List of Commands and Special Keys/Characters (Continued)

COMMAND SYNTAX 	 DESCRIPTION

OUTPUT COMMANDS

Keep (K) command takes lines of text out of the buffer and
puts them in the output file.

Quit (0) command takes lines of text out of the buffer or the
input files and puts them in the output file.

An (E) command terminates without writing an EOF to the
output file.

TERMINATE-SEQUENCE COMMANDS

Allows the user to make multiple single directional editing
passes on a source or object program.

SPECIAL KEYS/CHARACTERS

Pressing the control key and the H key simultaneously on the
hard copy terminal causes the terminal to backspace a
character to enable rewriting over an entered
character-error.

The RUB OUT key causes the line just entered to be deleted
so that a new line can replace it.

Pressing the control (CTRL) key and the I key
simultaneously on a hard-copy terminal causes a tab stop to
be entered in the input string, although only one space will
be echoed on the terminal.

Pressing the ESCape or RESET key on the system console
causes a display to be aborted.

When using a VDT, only the left position key (4—) and the
right (—) position key are recognized. The up and down
position keys cause garbage to be entered into the input
string. The left position key causes characters to be deleted
from the character string; a right position key causes
whatever was under the cursor to be entered.

DELETE LINE on a VDT acts the same as a RUB OUT on a
hardcopy terminal.

A SPACE character is echoed. The TAB is interpreted by the
text editor and spaces are inserted to fill the text line to the
next TAB setting.

K

0

E

T or C

CTRL-H

RUB OUT

CTRL-I

ESC/RESET

position keys

DELETE LINE

Alm` TAB

7.

9900 FAMILY SYSTEMS DESIGN 	 7-47

TXDS COMMANDS FOR FS 990
SOFTWARE DEVELOPMENT SYSTEM

Program Development:
Software Commands —
Description and Formats

TXMIRA Options

OPTION 	 DESCRIPTION

Mnnnnn 	 Overrides memory size default; default is 2400 bytes

X 	 Produce cross-reference

L 	 Produce assembly listing

T 	 Expand TEXT code on listing

S 	 Produce sorted symbol list

C 	 Produce compressed object output where n is a decimal digit

TXLINK Options

OPTION 	 DESCRIPTION

Mnnnnn 	 Override default memory size, default is 11800 bytes.

C 	 Compressed object output.

laaaaaaaa 	 IDT for linked object.

Partial link desired.

L 	 Print load map and symbol list.

Note: n is a decimal digit and a is an alphanumeric character.

TXCCAT Options

OPTION 	 DESCRIPTION

TRnnnn 	 Truncate record to length nnnn.

FLnnnn 	 Fix records to size nnnn by padding with blanks or by
truncation.

SKnnnn 	 Skip nnnn input records, prior to output.

LFnn 	 List file, page length = nn, default = 55.

SLnn 	 Space lines on listing, nn = space count, default = 0.

NL 	 Number lines on listing.

RI 	 Do not rewind input on open.

RO 	 Do not rewind output on open.

Note: n is a decimal digit and the maximum field size is given by the number of n's.

7-48 	 9900 FAMILY SYSTEMS DESIGN

Program Development:
Software Commands —
Description and Formats

TXDS COMMANDS FOR FS 990
SOFTWARE DEVELOPMENT SYSTEM

TXDBUG Keyboard Commands

DEBUG Commands

Pk
IC 	 Inspect Communications Register Unit (CRU)

IM 	 Inspect Memory

IR 	 Inspect AU Register (WP, PC, ST)

IS 	 Inspect Snapshot

IW 	 Inspect Workspace Registers

MC 	 Modify Communications Register Unit (CRU)

MM 	 Modify Memory

MR 	 Modify Registers

MW 	 Modify Workspace Registers

SB 	 Set Breakpoint

SP 	 Set H/W Write Protect Option

SR 	 Set Trace Region

SS 	 Set Snapshot

ST 	 Set Trace

CB 	 Clear Breakpoint

CP 	 Clear H/W Write Protect Option

CR 	 Clear Trace Region

CS 	 Clear Snapshot

7 4

9900 FAMILY SYSTEMS DESIGN 	 749

AMPL
Reference Data

► 7

Program Development:
Software Commands —
Description and Formats

AMPL
REFERENCE DATA

EXPLANATION OF THE NOTATION USED IN THIS CARD

Optional
Items

Substitution

Repetition

Required

CHARACTER SET

Notation

[item]

'item 1 t
litem 21

expr
`file'

item . 	.

<item>

Explanation

Bracketed item may be omitted.

Exactly one item must be selected.
from the items in braces.

Any expression may be used.
File or device name required.

A list of items may be used.

Replace with item.

Type

Special

Numerals

Letters

Characters

RETURN SPACE
! " $ / () * + ,
— . / : ; < =
> ? @

0 — 9

A — Z,a — z

Use

Any printable character may be used in a quoted
string. RETURN terminates line and statement. ";"
may separate statements. SPACE separates adjacent
numbers and identifiers.

NOTE: All AMPL reserved words use only upper case (UPPER CASE LOCK).

SYMBOL NAMES

Type

System

User-defined

Program
label

CONSTANTS

 Type

Decimal

Hexadecimal

Octal

Binary

ASCII

Instruction

Keyword

Example

RO
ETRC

USRVAR
X3
BRKADR
GO

IDT.
.DEF

Example

10833

02A51, >2A51

125121

<10101001010001

XOR *R1,R9 #

IAQ

Definition

Up to four alphanumeric characters; all system
symbols are predefined.

Up to six alphanumeric characters; assignment defines
a variable.
ARRAY statement defines an array.
PROC/FUNC statement defines a procedure/function.

Up to six alphanumeric characters. Period after IDT
and before DEF labels, defined by LOAD command.

Range

1 	... 32767

>0 . . . >FFFF

10 	. 	 . 1177777

<0 ... <1111111111111111

See keyword constant table.

74

9900 FAMILY SYSTEMS DESIGN 7-51

AMPL
REFERENCE DATA

Program Development:
Software Commands —
Description and Formats

EXPRESSIONS

Type 	 Example

Subexpression 	(expr)

Definition

Identity 	 + expr 	 Value of <expr>.

Negation 	 — expr 	 Two's complement of <expr>.

Target memory 	@addr 	 <addr> used as word address into emulator or
target memory.

Proc/Func 	ARG expr 	 Argument in position <expr> of call list; ARG 0
Argument 	 is number of arguments in list.

Proc/Func 	LOC expr 	 Word <expr> of local variable array; LOC 0 is
local variable 	 length of local variable array.

Multiplication 	exprl *expr2 	Signed product (warning on overflow).

Division 	 exprl /expr2 	Signed quotient (warning on divide by zero).

Remainder 	exprl MOD EXPR2 Signed remainder of division (warning on divide
by zero).

Addition 	 exprl + expr2 	Signed sum.

Subtraction 	exprl - expr2 	Signed difference.

NOTE: Result of relational operator is either FALSE (0) or TRUE (-1).

Equality 	 exprl EQ expr2 	16-bit comparison.
exprl NE expr2

Arithmetic 	 exprl LT expr2 	Signed, 16-bit comparison.
inequality 	 exprl LE expr2

exprl GT expr2
exprl GE expr2

Logical 	 exprl LO expr2 	Unsigned, 16-bit comparison.
inequality 	 exprl LOE expr2

exprl HI expr2
exprl HIE expr2

Complement
	

NOT expr 	 16-bit one's complement.

Conjunction 	exprl AND expr2 	16-bit boolean AND.
expr 1 NAND expr2 16-bit boolean not AND.

Disjunction
	exprl OR expr2 	16-bit boolean OR.

exprl XOR expr2 	16-bit boolean exclusive OR.

NOTE: Operators are given in order of precedence, highest to lowest. Solid lines separate
precedence groups; within each group, precedence is equal and evaluation is left to
right. Evaluation results in a 16-bit integer value.

7-57 	 9900 FAMILY SYSTEMS DESIGN

Program Development:
Software Commands —
Description and Formats

AMPL
REFERENCE DATA

Alln■

UNSIGNED ARITHMETIC

Syntax

MPY (expr1, expr2)

DIV (divisor, dividend)

MDR

ARRAY DEFINITION

ARRAY name(exprl [,expr2]), .. .

DISPLAY STATEMENTS

exprtf 	f]

'LITERAL STRING'

addi [TO addr2] [:f . . . f] ? [:f .

Definition

Low-order 16 bits of unsigned product.
<expr1>* <expr2>; high order 16 in MDR.

Unsigned quotient of 32-bit number (MDR,
<dividend>) over <divisor>; remainder in
MDR.

High-order 16-bits of MPY product and of DIV
dividend; remainder of DIV; unsigned carry of +
and-.

User <name> (previously undefined or name of
deleted array) is defined as one- or
two-dimension array.

Value of expression

Literal string

Target memory

Format specification/[:f . . . 	f]
ASCII A set default G octal O [i]
binary B[i] hexadecimal H[i] symbolic S
decimal D[i] instruction I unsigned U[i]
name = E newline N[j] space X[j]

Note: 	l< i< = 9
i = 0
1 < = j< = 9
j = 0

field width T digits, then two blanks
default field width, no trailing blanks
repeat 'y times
repeat 10 times

74

Response to display/modify mode(?):
forward step 	RETURN, +
back step 	 —
exit

replace contents
open new address
change display

<expr>
@<addr>
:f . . . f

DISASSEMBLER

Instruction
	

DST
	

Destination address.

operands
	

SRC
	

Source address.

NOTE: Additional instructions of the TMS9940 (DCA, DCS, LIIM, SM) will assemble correctly
(# DCA *RC1 #) but will disassemble as XOP instructions. See TMS9940
specifications for details.

9900 FAMILY SYSTEMS DESIGN 7-53

AMPL
REFERENCE DATA

Program Development:
Software Commands —
Description and Formats

ASSIGNMENT STATEMENTS

Type
	

Example

Variable 	 sym = expr

Target memory 	@addr = expr

Proc/Func 	ARG n = expr
argument

Command local 	LOC n = expr

Array 	 A[(i1 [,i2])] = e

Definition

User-defined or writable system symbol or REF
program label.

Put value of <expr> at target <addr>

Local copy of argument in position <n> of call
list.

Word <n> of local storage array.

User defined array name; zero, one, or two index
expressions.

NOTE: Precedence of @, ARG, and LOC may require parenthesis around following
expression.

COMPOUND STATEMENTS

Syntax

BEGIN statements END

ESCAPE

Definition

Statements are executed sequentially. Use in
place of any single statement syntax.

<s1> is executed if <expr> is TRUE (nonzero).
Otherwise, <s2> is executed, if included.

Statement <si> at first label expression <expr>
equal to <expr> is executed. If none, statement
<s> is executed, if included.

While <expr> is TRUE (nonzero), <statement> is
executed.

<statement> is executed. If <expr> FALSE (zero),
<statement> is executed until <expr> is TRUE.

Value of <expr1> is assigned to <var>.
<statement> is executed until <var> is equal to
<expr2>; <expr3> is added to <var>, and
<statement> repeated. Default value of <exp3> is
1

Exit from innermost enclosing WHILE, REPEAT, or
FOR statement.

CONTROL STATEMENTS

IF expr
THEN s1
[ELSE s2]

CASE expr OF
expr 1::s1;

exprn::sn
[ELSE s]

END

WHILE expr
DO statement

REPEAT statement
UNTIL expr

FOR var = expr] TO expr 2[BY
expr3]

DO statement

7-54 9900 FAMILY SYSTEMS DESIGN

Program Development:
Software Commands —
Description and Formats

AMPL
REFERENCE DATA

PROCEDURE/FUNCTION/FORM DEFINITION

PROC name [(args[Jocs])] statements END

FUNC name [(args[Jocs])] statements END

RETURN [expr]

FORM name 'prompt' [= [constant }]];
'string'

PROCEDURE/FUNCTION CALLS

User-defined <name> (previously
undefined or deleted procedure/function)
is bound to <statements>.
<args> is the required number of
arguments.
<locs> is the size of local storage array.

Pass control back to calling statement. In a
procedure, <expr> is ignored. In a
function, value of <expr> replaces the
function call in the calling expression.

END

<name> must be a previously defined
procedure or function, semicolon required
between prompts.

proc name [(expr, . . .)]
	

User-defined or system procedure/function

r°11 *
	 with list of argument expressions.

func name [(expr, . . .)]

NOTE: Procedure/functions with defined FORM
for arguments using the FORM.

example FORM:

COMMENTARY ENTRY

PROMPT 1 = default value
PROMPT 2 =
PROMPT 3* =

FORM control function keys:

Command definition determines number of
arguments required. Some system
commands require quoted strings as
arguments.

when called with no arguments will prompt

comment, not a prompt required argument,
with default value required argument, must
enter value default given if value not
entered

Next prompt:
	

TAB, —>FIELD,
SKIP, RETURN

Previous prompt:
	

1, FIELD
First prompt:
	

HOME
Erase value:
	

ERASE FIELD,
ERASE INPUT

Redisplay default:
	

INSERT LINE
Duplicate previous value:

	
F4

Complete form:
	

ENTER
Abort form:
	

CMD

9900 FAMILY SYSTEMS DESIGN
	

7-55

AMPL
REFERENCE DATA

Program Development:
Software Commands —
Description and Formats

INPUT/OUTPUT COMMANDS

Syntax
HCRB
HCRR (offset,width)
HCRW (offset,width,value)

COPY (tfile' i medit d)/

'file'

LIST 0 ISNFF })

EOF

NL

unit = OPEN (file' [
edit id [' { °0uT} ' i: IN 	REWIND

10

{ sREE? }1]]

Definition
Host computer CRU base address.
Read host computer CRU field.
Write <value> into host CRU field.

AMPL input from 'file'
AMPL input from edit buffer

Initialize listing device or file. Disable listing output.
Enable listing output. Close listing device or file with
EOF.

Print newline.

no arguments — list all open units and edit buffers.
initialize 'file7<edit id> I/O unit

0 — device 10, file IN only
IN — for input only
OUT — for output only
10 — for input/output
REWIND — position to beginning of file
EXTEND — position to end of file
SEQ — auto-create sequential file
REL — auto-create rel-rec file

■ 7
	

event-READ [(unit
	

{DIRECT} [{GRA
PH}

[VS IEYQ [' ,Ito
row r t°co1 [, s col]] }1

no arguments — read console
Read record from (unit)

0 — issue read ASCII
DIRECT — issue read direct
GRAPH — read graphics on 922 VDT
VDT — read in cursor positioning mode

f row — field start row
f col — field start column
s col — cursor start column

7-56 9900 FAMILY SYSTEMS DESIGN

Program Development:
Software Commands —
Description and Formats

AMPL
REFERENCE DATA

INPUT/OUTPUT COMMANDS (continued)

SEQ — read sequentially
REL — read sepecified record
rec # — record number to read
<event> /256 = cursor column after read if VDT
<event> AND 255 = event key value if VDT,
else >OD for end of record,
>13 for end of file.

Evaluate expression in <unit>'s buffer;
if no <unit>, READ/EVAL the console.

AMPL display unit for output to <unit>;
if no <unit>, to console.

Move contents of <from unit> 's buffer to <to unit>'s buffer
<okay> = 0 if moved

= >FFFF if too big and not moved.

Rewind (unit) — repositions, file clears console
no argument — clears console

value = EVAL [(unit)]

DPLY [(unit)]

okay = MOVE
(from unit,
to unit)

REW[(unit)]

Cursor = WRIT (unit [, DIRECT} [, {GRAPH}]

[,

VDT 	f T {Orow [, [f cold])

REL [, rec #

no arguments — write console
Write record to (unit),

0 — issue write ASCII
DIRECT — issue write direct
GRAPH — write graphics on 911 VDT
VDT — write in cursor positioning mode

f row — field start row
f col — field start column

SEQ — write sequentially
REL — read specified record
rec # — record number to read
<cursor> /256 = cursor column after write if VDT

71

CLSE (unit [, EOF 	}I Release I/O <unit>,
L 	UNLOAD 	EOF — write end-of-file mark

UNLOAD — unload unit

9900 FAMILY SYSTEMS DESIGN 	 7-57

AMPL
REFERENCE DATA

Program Development:
Software Commands —
Description and Formats

SYSTEM SYMBOLS

V — variable F — function 	 P — procedure

CLR 	 P — clear 	 MDEL 	P — symbols
CLSE 	P — I/O close 	 MDR 	V — arithmetic
COPY 	P — copy 	 MIN 	 V — minutes
CRUB 	V CRU base 	 MOVE 	F — I/O buffer
CRUR 	F 	CRU read 	 MPY 	 F — multiply
CRUW 	P CRU write 	 MSYM 	P — symbols
DAY 	 V — day 	 NL 	 P — newline
DBUF 	P 	delete buffer 	 OPEN 	F — I/O open
DELE 	P — delete symbol 	 PC 	 V -- registers
DIV 	 F — divide 	 RO-R15 	V — registers
DPLY 	P — display 	 READ 	F — I/O read
DR 	 P — registers 	 REW 	P — I/O rewind
DST 	 V — destination 	 RSTR 	P — restore
DUMP 	P — dump 	 SAVE 	P — save
EBRK 	P — emulator 	 SEC 	 V — seconds
ECLK 	V — emulator 	 SRC 	 V — source
EDIT 	F — edit 	 ST 	 V — register
EHLT 	F — emulator 	 TBRK 	P — trace module
EINT 	P — emulator 	 TEVT 	P — trace module
EMEM 	V — emulator 	 THLT 	F — trace module
ERUN 	P — emulator 	 TINT 	 P — trace module
EST 	 F — emulator 	 TNCE 	V — trace module
ETB 	 F — emulator 	 THE 	 V — trace module
ETBH 	F — emulator 	 TRUN 	P — trace module
ETBO 	V 	emulator 	 TST 	 F — trace module

∎ 7 	ETRC 	P — emulator 	 TTB 	 F — trace module
ETYP 	V — emulator 	 TTBH 	F — trace module
EVAL 	F — evaluate 	 TTBN 	V — trace module
EXIT 	 P — exit AMPL 	 TTBO 	V — trace module
HCRB 	V — host CRU 	 TTRC 	P — trace module
HCRR 	F — CRU read 	 USYM 	P — user symbols
HCRW 	P 	CRU write 	 VRFY 	P — verify
HR 	 V — hour 	 WAIT 	F — delay AMPL
10R1 	V 	I/O 	 WP 	 V + register
KEEP 	P — keep edit 	 WRIT 	P — I/O write
LIST 	 P — list 	 YR 	 V — year
LOAD 	P — load object

7-58 	 9900 FAMILY SYSTEMS DESIGN

Program Development:
Software Commands —
Description and Formats

AMPL
REFERENCE DATA

EDIT

Syntax 	 Definition
'file' 	 Create edit buffer with 'file'. Edit existing buffer. 401....

edit id = EDIT[({edit id } [,record])] 	No argument creates an empty buffer.

KEEP (edit id, 'file') 	 Save edit buffer onto 'file' and delete edit buffer.

DBUF (edit id) 	 Delete edit buffer.

EDIT CONTROL FUNCTION KEYS

911 	 913 	 CONTROL
Function 	 KEY 	 KEY 	 CHARACTER

edit/compose mode 	F7 	 F7 	 V
quit edit mode 	 CMD 	 HELP 	 X

roll up 	 Fl 	 Fl 	 A
roll down 	 F2 	 F2 	 B
set tab 	 F3 	 F3 	 C
clear tab 	 F4 	 F4 	 D
tab 	 TAB (shift SKIP) 	TAB 	 I
back tab 	 FIELD 	 BACK TAB 	 T

newline 	 RETURN 	 NEWLINE 	RETURN
insert line 	 unlabeled gray 	INSERT LINE 	0
delete line 	 ERASE INPUT 	DELETE LINE 	N
erase line 	 ERASE FIELD 	CLEAR 	 W
truncate line 	 SKIP 	 SET 	 K
insert character 	 INS CHAR 	 INSERT CHAR
delete character 	DEL CHAR 	 DELETE CHAR

cursor up
cursor down
cursor right
cursor left
top of screen 	 HOME 	 HOME

74

9900 FAMILY SYSTEMS DESIGN 	 7-59

AMPL
REFERENCE DATA

Program Development:
Software Commands —
Description and Formats

GENERAL COMMANDS

Syntax 	 Definition

USYM 	 List all user symbols, procedures, functions, and arrays.

DELE ('name'....) 	Delete user procedure, function, or array.

SAVE ('file') 	 Save all user defined symbols, functions, and arrays on 'file'.

RSTR ('file') 	 Restore user defined symbols, procedures, functions, and arrays
from 'file'.

CLR 	 Delete all user symbols, procedures, functions and arrays.

MSYM 	 List object program labels.

MDEL 	 Delete all object program labels.
EXIT 	 Exit from AMPL back to operating system.

TIMING

YR 	 Year (1976 to 1999)
DAY 	 Julian day (1 to 366)
HR 	 Hour (0 to 23)
MIN 	 Minute (0 to 59)
SEC 	 Second (0 to 59)

WAIT (expr) 	 Suspend AMPL for <expr>*50 milliseconds (<expr> = 20 is
one second).

TARGET MEMORY COMMANDS

■ 7

EMEM Emulator memory mapping: 9900/9980 map 8K
bytes (0->1FFF)
9940 define RAM and ROM sizes.

LOAD ('file'[,bias[,IDT] [+ DEF] [+ REF]]]):
Load object program by bias and enter program
labels into table.

VRFY ('file' [,bias]) 	 Verify object program, listing differences between
object and target memory.

DUMP ('file',Iow,high[start])
Dump program from target <low> to <high> —
in nonrelocatable format.

7-60 	 9900 FAMILY SYSTEMS DESIGN

Program Development:
Software Commands —
Description and Formats

AMPL
REFERENCE DATA

EMULATOR CONTROL COMMANDS

Syntax 	 Definition

EINT (`EMOn' [, 01 }[,'TMOn1]) 	
Initialize Emulator device, clock 0 = prototype/
1 = emulator.

ECLK 	 Processor clock.

ETYP 	 Processor type:
-1 =TMS9940, 0 = SBP9900,
1 = TMS9900, 2 = TMS9980.

MA
ETRC ({IAQX [,count[,low,high]])

IAQ 	 Trace qualifier, completion break count
(OFF-255), address range.

MA

EBRK (I AQ 	[+ ILLA] [,address]...) {
MR
MW 	

Address breakpoint(s) (ILLA only valid for
TMS9940).

ERUN 	 Run emulation at PC, WP, ST.

40iik EST 	 Emulation status (3 LSBits): HOLD, IDLE,
Running

EHLT 	 Halt emulation, return status.
MR

ETBH (index[,{MW}]) 	 Indexed bus signal from buffer. (TRUE if
IAQ 	 expression matches).

ETB (index) 	 Indexed address from trace buffer.
ETBO, ETBN 	 Emulator Trace buffer limits: Oldest, Newest

sample indices.

71

9900 FAMILY SYSTEMS DESIGN 	 7-61

AMPL
REFERENCE DATA

Program Development:
Software Commands —
Description and Formats

TRACE MODULE CONTROL

Syntax 	 Definition
TINT ('TMOn') 	Initialize trace module

OFF
TTRC ([INT] { [±00] [±01][±02][±03] } [,count[, jON }]])

[±1A0][± DBIN] 	 I OFF

Qualify data samples, trace completion counter (OFF-255), latch
option on D0-D3.

{ 	
OFF

TEVT ([± DO] [± Dl] [± D2] [± D3] [,value[,mask]])
[±1AO] [±DBIN)

EXT 	 c
Qualify D0-D3 event (or EXTernal), <value> and <mask> for
D4-D19.

TBRK (count [,<delay>[,INV] [+ EDGE]]])

Set event counter (OFF-FFFF), set delay counter (OFF-244),
count INVerted/EDGE events.

TRUN 	 Start Trace module tracing.

TST 	 Trace module status (3 LSB's), event occurred, trace full, tracing.

THLT 	 Halt trace module, return status.

THE 	 Number of events since last TRUN.

TNCE 	 Number of event count overflows.
TTBH (index[, f [± DO] [+D1][± 02] [± D3]) I)

) 	[±1A0][± DBIN] 	i
D0-D3 of indexed samples, (TRUE if expression matches).

TTB (<index>) 	D4-D19 indexed samples (data bus)

■ 7 	TTBO, TTBN 	Trace module trace buffer limits: Oldest, Newest sample indices.

TRACE MODULE INTERCONNECT TO EMULATOR

00 	 Memory address bit 15 (TMS9940 only).

DO 	 Byte memory cycle (TMS9940 only).

01 ,D1 , IAQ 	 Instruction Acquisition.

Q2,D2,DBIN 	 DataBuslN = MR(read), MW = -DBIN(write).

03 	 Emulator trace qualifier and range (ETRC).

D3, External Event 	Emulator address breakpoint (EBRK).

D4-D19 	 Emulator data bus (bits 0-15).

External Clock 	 Emulator memory cycle clock.

Control Cable 	 Synchronizes emulation and tracing. Trace module will halt
emulator for EINT ('EMOn', clock 'TMOn').

7-62 	 9900 FAMILY SYSTEMS DESIGN

Program Development:
Software Commands —
Description and Formats

AMPL
REFERENCE DATA

TARGET REGISTERS

PC,WP,ST 	 Processor registers.

RO-R15 	 Workspace registers.

DR 	 Display all registers.

CRU READ/WRITE

GRUB 	 CRU interface base address.

CRUR (offset,width) 	Read target CRU field.

CRUW (offset,width,value); Write <value> into target CRU field

KEYWORDS

ARG FORM THEN GE
ARRAY FUNC TO GT
BEGIN IF UNTIL HI
BY LOC WHILE HIE
CASE MOD AND LE
DO NULL NAND LO
ELSE OF OR LOE
END PROC XOR LT
ESCAPE REPEAT NOT NE
FOR RETURN EC)

KEYWORD CONSTANTS

DO EXT 10 02
D1 EXTEND MA 03
D2 GRAPH MR REF
D3 IA0 MW REL
DBIN IAQX N REWIND
DEF IDT OFF SEQ
DIRECT ILLA ON UNLOAD
EDGE IN OUT VDT
EOF INT 00 Y
ETBN INV 01

74

9900 FAMILY SYSTEMS DESIGN 	 7-63

AMPL
REFERENCE DATA

Program Development:
Software Commands —
Description and Formats

■ 7

ERROR MESSAGES

0 — ! UNDEFINED ERROR CODE !

1 — I/O ERROR, OS ERROR CODE RETURNED

2 — INSUFFICIENT MEMORY TO CONTINUE

3 — ! SEGMENT VIOLATION !

4 — I/O ERROR: INVALID UNIT ID

5 — I/O ERROR: READ/WRITE VIOLATION

6 — I/O ERROR: INSUFFICIENT MEMORY FOR OPEN
7 — ! DELETE UNIT CONTROL BLOCKS ERROR !

8 — TOO MANY IDT DEF/REF SYMBOLS IN LOAD

9 — EXCEEDED 15 LOAD OPERATIONS SINCE LAST CLR

10 — CANNOT ALLOCATE MEMORY FOR USER SYMBOL TABLE

11 — ! ERROR IN I/O UNIT CHAIN POINTERS !

12 — OVERLAY ERROR

101 — VARIABLE CANNOT BE READ

102 — VARIABLE CANNOT BE WRITTEN

103 — SYMBOL IS UNDEFINED

104 — ! INVALID CODEGEN BRANCH TABLE INDEX !

105 — INSUFFICIENT MEMORY TO COMPILE STATEMENT

106 — SYMBOL IS DEFINED; CANNOT BE REDEFINED

107 — INSUFFICIENT MEMORY TO COMPILE PROC/FUNC

108 — INPUT RECORD CANNOT BE CLASSIFIED

109 — INPUT STRING EXCEEDS MAXIMUM ALLOWED LENGTH

110 — ! INVALID SCANNER BRANCH TABLE INDEX !

111 — UNRECOGNIZABLE INPUT ITEM

112 — ! UNDEFINED OPERATOR !

114 — SYMBOL NOT AN IDT/DEF/REF LOAD SYMBOL
115 — USER SYMBOL TABLE FULL

116 — CONSTANT EXCEEDS 16 BITS

117 — SYNTAX ERROR

118 — ! INVALID KEYWORD STRING LENGTH !

119 — SYNTAX ERROR IN ONE-LINE-ASSEMBLY STATEMENT
120 — INCORRECT NUMBER OF ARRAY SUBSCRIPTS
121 — ESCAPE SPECIFIED OUTSIDE A LOOP CONSTRUCT

122 — ARRAY REDEFINED WITH INCORRECT SUBSCRIPTS

NOTE: A hexadecimal number is also printed with some error messages. Refer to the AMPL

System Operation Guide for complete explanation.

7-64 	 9900 FAMILY SYSTEMS DESIGN

Program Development:
Software Commands —
Description and Formats

AMPL
REFERENCE DATA

ERROR MESSAGES

201 — SYMBOL NOT FOUND TO DELETE

202 — SYMBOL CANNOT BE DELETED

203 — INVALID DISPLAY FORMAT CHARACTER FOLLOWING:

204 — NO LIST DEVICE ASSIGNED

205 — EMULATOR I/O ERROR CODE RETURNED

209 — INVALID INDEX INTO EMULATOR TRACE BUFFER

210 — !CANNOT ALLOCATE FORM CURRENT VALUE SEGMENT!

211 — INSUFFICIENT MEMORY TO SAVE FORM PARAMETERS
214 — INVALID RESTORE FILE

215 — INSUFFICIENT MEMORY TO COMPLETE THE RESTORE

216 — BAD TRACE OR COMPARISON MODE SELECTED

219 — TRACE MODULE I/O ERROR CODE RETURNED

220 — CANNOT EDIT ON THIS DEVICE TYPE

221 — TRACE INTERFACE CHANGE ILLEGAL WHILE TRACING
222 — INVALID INDEX INTO TRACE MODULE BUFFER

223 — INSUFFICIENT ARGUMENTS IN PROC/FUNC CALL

224 — STACK OVERFLOW; DELETE PROC/FUNC/ARRAY

225 — DELETED PROC/FUNC/ARRAY REFERENCED

226 — INSUFFICIENT ARGUMENTS IN FORM FOR PROC/FUNC
227 — ! INVALID FORM SEGMENT ID !

228 — ! INVALID FORM CURRENT VALUE SEGMENT ID !
229 — INVALID CHARACTER IN LOAD FILE

230 — CHECKSUM ERROR IN LOAD FILE

231 — ARITHMETIC OVERFLOW

233 — PROC/FUNC CALL ARGUMENT OUT OF RANGE

234 — INVALID "ARG" OR "LOC" INDEX FOR WRITING

235 — INVALID "ARG" OR "LOC" INDEX FOR READING

237 — ARRAY ALREADY DEFINED
238 — INVALID ARRAY DIMENSION

240 — REFERENCE TO UNDECLARED ARRAY

241 — INVALID ARRAY SUBSCRIPT
242 — ! ERROR ARRAY SEGMENT LENGTH !

243 — DELETED IDT/DEF/REF LOAD SYMBOL REFERENCED
244 — ALL IDT/DEF/REF LOAD SYMBOLS DELETED

245 — INVALID DEVICE TYPE TO "EINT" OR "TINT"

NOTE: Error messages withing exclamation marks (!) are AMPL internal system errors.
Contact Texas Instruments if problem persists.

74

9900 FAMILY SYSTEMS DESIGN 	 7 -65

POWER BASIC
MP 307

► 7

Program Development:
Software Commands —
Description and Formats

POWER BASIC
MP 307

REFERENCE CARD FOR DEVELOPMENT AND EVALUATION BASIC

As.- This card contains a summary of all POWER BASICt statements and commands for
Development and Evaluation BASIC. An explanation preceded by an asterisk (*) indicates
the statement or command is not supported by Evaluation BASIC. A* indicates the
statement is supported only by the Development BASIC software enhancement package.

COMMANDS

CONtinue

*Execution continues from last break.

LIST

LOAD

NEW

LIST the user's POWER BASIC program. In LIST will list from specified line number
through end of program or until ESC key is struck.

Reads a previously recorded POWER BASIC program from an auxiliary device or
configures POWER BASIC to execute a BASIC program in EPROM.
LOAD reads program from 733ASR digital cassette.
LOAD 1 or LOAD 2 * reads program from audio cassette drive No. 1 or No. 2.
LOAD <address>* configures POWER BASIC to execute BASIC program in
EPROM at specified address.

Prepare for entry of NEW POWER BASIC program or set the lower RAM memory
bound after auto-sizing.
NEW clears pointers of POWER BASIC and prepares for entry of new program.
NEW <address>* sets the lower RAM memory bound used by POWER BASIC
after auto-sizing or power-up.

PROGRAM

Program current POWER BASIC application program into EPROM.*
RUN

Begin program execution at the lowest line number.

SAVEn (n is interpreted as in LOADn command)

Record current user program on auxiliary device.
op. SIZE

Display current program size, variable space allocated, and available memory in
bytes.

t Trademark of Texas Instruments

71

9900 FAMILY SYSTEMS DESIGN 	 7-67

POWER BASIC
MP 307

Program Development:
Software Commands —
Description and Formats

EDITING

The phrase "(ctrl)" indicates that the user holds down the control key while depressing
the key corresponding to the character immediately following.

(CR) 	 Enter edited line.

(ctrl)In 	 Insert n blanks.

(ctrI)Dn 	 *Delete n characters.

(ctrI)H 	 Backspace one character.

(ctrI)F 	 Forward space one character.

In(ctrI)E 	 Display for editing source line indicated by line number (In).

(ctrl)T 	 Toggle from one partition to the other partition (only in
Evaluation BASIC).

(esc) 	 Cancel input line or break program execution.

(Rubout) or (DEL) Backspace and delete character.

STATEMENTS

InBAUD <exp 1,> <exp 2>
*sets baud rate of serial I/O port(s).

InBASE <(exp)>

Sets CRU base address for subsequent CRU operations

InCALL Name <subroutine address>[, <var 1>, <var 2>, <var 3>, <var 4>]

*Transfers to external subroutines. If variable is contained in parentheses, the
address will be passed; otherwise, the value will be passed.

<exp> 	 <exp>
I n DATA 	<string const>}[{ 	<string const>}1

defines internal data block.

In DEF FN<x>[(<arg 1> [, arg 2] [, arg 3])]= <exp>

*Defines user arithmetic function.
InDIM <var (dim[, dim] . ..)> [, 	.]

Allocates user variable space for dimensioned or array variables.

InEND
Terminates program execution and returns to edit mode.

In ERROR<In>

*Specifies a subroutine that will be called via a GOSUB statement when an error
occurs.

In ESCAPE
InNOESC

*Enables or disables the excape key to interrupt program execution (always
enabled in Evaluation BASIC).

■ 7

7 -68 	 9900 FAMILY SYSTEMS DESIGN

Program Development:
Software Commands —
Description and Formats

POWER BASIC
MP 307

/lob-

joeIOW

InFOR <sim-var> = <exp> TO <exp> [STEP <exp>]
InNEXT <sim-var>

Open and close program loop. Both identify the same control variable. FOR assigns
starting, ending, and optionally stepping values.

InGOSUB<In>

Transfer of control to an internal subroutine beginning at the specified line.

InPOP
*Removal of most previous return address from GOSUB stack without an execution
transfer.

InRETURN
Return from internal subroutine.

InGOTO<In>

Transfers program execution to specified line number.

InIF<exp>THEN<statement>
InELSE<statement>

Causes conditional execution of the statement following THEN. *ELSE statements
execute when IF condition is false.

InIMASK<LEVEL>
*Set interrupt mask of TMS 9900 processor to specified level.

InTRAP<Ievel>TO<In>

*Assign interrupt level to interrupt subroutine.

InIRTN
*Return from BASIC interrupt service routine.

InINPUT<var> [{ ; (BASIC • 	• [{ 11

Accesses numeric constants and strings from the keyboard into variables in the
INPUT list.

In [LET] <var> = <exp>

Evaluates and assigns values to variables or array elements.

{

<var>}
<exp>

InON 1<var> I <exp> THEN GOSUB In Lin] .

*Transfers execution to the line number specified by the expression or variable.

InPRINT <exp> [,exp]
Print (format free) the evaluated expressions.

InRANDOM [exp]
*Set the seed to the specified expression value.

InREAD 1<numeric var>} { <numeric var>1
<string var> 	<string var>

Assigns values from the internal data list to variables or array elements.

InON THEN GOTO In [,in] .

74

9900 FAMILY SYSTEMS DESIGN 	 7-69

POWER BASIC
MP 307

Program Development:
Software Commands —
Description and Formats

■ 7

In REM [text]
Inserts comments.

InRESTOR [exp]
Without an argument, resets pointer to beginning of data sequence; with an
argument, resets pointer to line number specified.

InSTOP
Terminates program execution and returns to Edit mode.

InTIME
Sets, displays, or stores the 24 hour time of day clock.

InTIME <exp>, <exp>, <exp>
Sets and starts clock.
InTIME <string-var>
Enables storing clock time into a string variable.
InTIME
Prints clock time as HR:MN:SD.

InUNIT <exp>
*Designates device(s) to receive all printed output.

FUNCTIONS

ABS <(exp)> 	 *Absolute value of expression.

ASC < (string var)> 	 *Returns decimal ASCII code for first character of
string variable.

ATN <(exp)> 	 Arctangent of expression in radians.

BIT <(var, exp)> 	 *Reads or modifies any bit within a variable.

BIT <(var, exp 1)> = <exp 2> 	Returns a 1 if bit is set and 0 if not set.
Selected bit is set to 1 if assigned value is non-zero
and to zero if the assigned value is zero.

COS >(exp)> 	 Cosine of the expression in radians.

CRB <(exp)> 	 Reads CRU bit as selected by CRU base + exp. Exp is
valid for — 127 thru 128.

CRB <(exp 1)> = <(exp 2)> 	Sets or resets CRU bit as selected by CRU base + exp
1. If exp 2 is non-zero, the bit will be set, else reset.
Exp 1 is valid for — 127 thru 128.

CRF <(exp)> 	 Reads n CRU bits as selected by CRU base where exp
evaluates to n. Exp•is valid for 0 thru 15. If exp = 0, 16
bits will be read.

CRF <(exp 1)> = <(exp 2)> 	Stores exp 1 bits of exp 2 to CRU lines as selected by
CRU BASE. Exp 1 if valid for 0 thru 15. If exp 1 = 0, 16
bits will be stored.

EXP <(exp)> 	 *Raise the constant e to the power of the evaluated
expression.

INP <(exp)> 	 Returns the signed integer portion of the expression.

7-70 	 9900 FAMILY SYSTEMS DESIGN

Program Development:
Software Commands —
Description and Formats

POWER BASIC
MP 307

■11•1•1111111111•11111■1116 	

LOG <(exp)>,

MEM <(exp)>

MCH <(string 1), (string 2)>

NYK <(exp)>

RND

SIN <(exp)>

SOR <(exp)>

SRH <(string 1), (string 2)>

SYS <(exp)>

TIC <(exp)>

STRINGS

*Returns natural logarithm of the expression.

Reads byte from user memory at address specified by
exp. Exp must be in the integer range, (0 to 65535).

Stores byte exp 2 into user memory specified by exp
1. Exp 1 and exp 2 must be in the integer range.

*Returns the number of characters to which the two
strings agree.

Conditionally samples the keyboard in run time mode.
If exp < >0, return decimal value of last key struck
and clear key register. (0 if no key struck.)
If exp = 0, return a 1 if the last key struck has the same
decimal value as the expression. Clear key register if
TRUE, else return 0 if FALSE.

Returns a random number between 0 and 1.

Sine of the expression in radians.

Square root of expression.

*Return the position of string 1 in string 2, 0 if not
found.

*Obtains system parameters generated during
program execution. Example: SYS(0) = INPUT control
character, SYS(1) = Error code number, SYS(2) = error
line number.

Returns the number of time tics less the expression
value. One TIC equals 40 milliseconds (1 /25 second).

O.*
MEM <(exp 1)> = <(exp 2)>

ASC (string-var)

*Convert first character of string to ASCII numeric
representation.

<string-var>
<string-var> = { <string-constant>

Store string into string-var ending with a null.

MCH (<string 1>, <string 2>)
*Return the number of characters to which the 2
strings agree.

SRH (<string 1>, <string 2>)
*Return the position of string 1 in string 2. Zero is
returned if not found.

ASCII Character

Conversion Function

Assignment

Character Match

011
'' Function

Character Search
Function

71

Concatenate <string-var>

{

<string-var> <string-var>
<string-constant> }

+
{<string-constant>}[

9900 FAMILY SYSTEMS DESIGN 	 7-71

POWER BASIC
MP 307

Program Development:
Software Commands —
Description and Formats

■ 7

Convert to ASCII 	 <string-var> = <exp>
<string-var> = # <string>, <exp>

*Convert exp to ASCII characters ending with a null.
string specifies a formatted conversion.

Convert to Binary 	 <var 1> = <string>, <var 2>
*Convert string into binary equivalent. Var 2 receives
the delimiting non-numeric character in first byte.

Deletion 	 <String-var> = /<exp>
*Delete exp characters from string-var.

Insertion 	 <string-var> = /<string>

*Pick byte into string-var.

<string-cons
Pick 	 <string-var> = { <string-constant> , <exp>

Pick number of characters specified by exp into
string-var ending with a null.

<string-var Replace 	 <string-var> =
<string-constant>

; <exp>

Replace number of characters specified by exp of
string-var with string.

String Length 	 <var> = LEN <(string-var)>
Function 	 <var> = LEN "string"

*Return the length of string.

INPUT OPTIONS

string-var 	 Prompt with colon and input character data.
Example: INPUT $A
Delimit expressions. Example A, B

Suppress prompting or CR LF if at end of line.
Examples: INPUT ;A

INPUT A;

# exp 	 Allow a maximum of exp characters to be entered.
Example: INPUT #1 'of or N"$1

%exp 	 *Must enter exactly exp number of characters.
Example: INPUT %4"CODE"C

?<In> 	 *Upon an invalid input or entry of a control character,
a GOSUB is performed to the line # . SYS(0) will be
equal to — 1 if there was an invalid input. Otherwise,
SYS(0) will equal the decimal equivalent of the control
character.
Example: INPUT ?100;A

7-72 	 9900 FAMILY SYSTEMS DESIGN

Program Development:
Software Commands —
Description and Formats

POWER BASIC
MP 307

OUTPUT OPTIONS

; 	 Delimit expressions or suppress CR LF if at end of line.
Examples: PRINT A;B

PRINT A;
Tab to next print field. Example: PRINT A, B

TAB <(exp)> 	 Tab to exp column. Example: PRINT TAB (50);A
string 	 Print string or string-var. Example: PRINT "Hl";$A(0)

exp 	 *Print exp as hexadecimal in free format.
Example: PRINT # 123

# ,exp 	 *Print exp as hexadecimal in byte format.
Example: PRINT # ,50

# ;exp 	 *Print exp as hexadecimal in word format.
Example: PRINT # ,A

<hex value> 	 *Direct output of ASCII codes. Example: PRINT
"<OD> <OA>"

# string 	 *Print under specified format where:
PRINT # "9999"1
9= digit holder

PRINT # "000-00-0000"SS
0 = digit holder or force 0

PRINT # "$$$,$$$.00"DLR
$ = digit holder and floats $

PRINT # "SSS.0000"4*ATN1
S= digit holder and floats sign
PRINT #"«<.00>"I
< = digit holder and float on negative
>number

PRINT #"990.99E"N
E= sign holder after decimal
PRINT # "990.99"N
. = decimal point specifier

PRINT # "999,990.99"N
, = suppressed if before significant digit
PRINT # "999,990A 00"I
A = translates to decimal point
PRINT # "Hl =99"1
any other character is printed.

74

9900 FAMILY SYSTEMS DESIGN 	 7-73

POWER BASIC
MP 307

Program Development:
Software Commands—
Description and Formats

GENERAL INFORMATION

ARITHMETIC OPERATIONS

A = B 	 Assignment
A — B 	 Negation or subtraction
A + B, $A + $B 	 Addition or string concatenation
A*B 	 Multiplication
A/B 	 Division
AA B 	 Exponentiation
— A 	 Unary Minus
+ A 	 Unary Plus
LOGICAL OPERATORS

LNOT A
A LAND B
A LOR B
A LXOR B

RELATIONAL OPERATORS

*1's complement of integer.
Bit wise AND.

*Bit wise OR.
*Bit wise exclusive OR.

■ 7

1 if TRUE and 0 if FALSE
A = B 	 TRUE if equal, else FALSE.
A = = B 	 *TRUE if approximately equal (1 E-7), else FALSE
A<B 	 TRUE if less than, else FALSE.
A< = B 	 TRUE if less than or equal, else FALSE.
A>B 	 TRUE if greater than, else FALSE.
A> = B 	 TRUE if greater than or equal, else FALSE.
A<>B 	 TRUE if not equal, else FALSE.
NOT A 	 *TRUE if zero, else FALSE.
A AND B 	 *TRUE if both non-zero, else FALSE.
A OR B 	 *TRUE if either non-zero, else FALSE.

OPERATOR PRECEDENCE

1. Expressions in parentheses 7. = ,>
2. Exponentiation and negation 8. = = , LXOR
3. 9. NOT, LNOT
4. + , — 10. AND, LAND
5. < = ,<> 11. OR, LOR
6. > = ,< 12. (=)ASSIGNMENT

7-74 	 9900 FAMILY SYSTEMS DESIGN

Program Development:
Software Commands—
Description and Formats

POWER BASIC
MP 307

SPECIAL CHARACTERS

4111111,,
Separates statements typed on same line.
Tail remark used for comments after program statement
Equivalent to PRINT.

ERROR CODES

1 = SYNTAX ERROR 	 37 = ILLEGAL DELIMITER
2 = UNMATCHED PARENTHESIS 	38 = UNDEFINED FUNCTION
3 = INVALID LINE NUMBER 	 39 = UNDIMENSIONED VARIABLE
4 = ILLEGAL VARIABLE NAME. 	40 = UNDERFINED VARIABLE

5 = TOO MANY VARIABLES 	 41 = EXPANSION EPROM NOT INSTALLED

6 = ILLEGAL CHARACTER 	 42 = INTERRUPT W/O TRAP
7 = EXPECTING OPERATOR 	 43 = INVALID BAUD RATE
8 = ILLEGAL FUNCTION NAME 	 44 = TAPE READ ERROR
9 = ILLEGAL FUNCTION ARGUMENT 	45 = EPROM VERIFY ERROR

10 = STORAGE OVERFLOW 	 46 =- INVALID DEVICE NUMBER
11 = STACK OVERFLOW

,411■■ 12 = STACK UNDERFLOW
13 = NO SUCH LINE NUMBER
14 = EXPECTING STRING VARIABLE
15 = INVALID SCREEN COMMAND
16 = EXPECTING DIMENSIONED VARIABLE
17 = SUBSCRIPT OUT OF RANGE
18 = TWO FEW SUBSCRIPTS
19 = TOO MANY SUBSCRIPTS
20 = EXPECTING SIMPLE VARIABLE
21 = DIGITS OUT OF RANGE (0< # of digits <12)
22 = EXPECTING VARIABLE
23 = READ GUT OF DATA

24 = READ TYPE DIFFERS FROM DATA TYPE
25 = SQUARE ROOT OF NEGATIVE NUMBER
26 = LOG OF NON-POSITIVE NUMBER
27 = EXPRESSION TOO COMPLEX
28 = DIVISION BY ZERO
29 = FLOATING POINT OVERFLOW
30 = FIX ERROR
31 = FOR WITHOUT NEXT
32 = NEXT WITHOUT FOR
33 = EXP FUNCTION HAS INVALID ARGUMENT
34 = UNNORMALIZED NUMBER
35 = PARAMETER ERROR
36 = MISSING ASSIGNMENT OPERATOR

74

9900 FAMILY SYSTEMS DESIGN 	 7-75

Cross Support
► 7 	

Program Development:
Software Commands —
Description and Formats

ASSEMBLER FILES

The Cross Assembler data base which is assigned to PUNIT, is read by the FORTRAN
program as the first file at execution time. It is the actual Cross Assembler program written in
internal code, and it is suggested that it be assigned to a permanent disk file.

INTERNAL
NAME

DEFAULT
UNIT

DEVICE
TYPE

RECORD
LENGTH FUNCTION

IUNIT 5 CR,CS 80 TMS 9900 Source Input
MT,DF

LUNIT 6 CS,MT 80 Listing Output

OUNIT 7 CS,MT 80 TMS9900 Object Output
SUNIT 10 MT,DF 80 Assembly Scratch

PUNIT 11 CR,CS 80 Data Base INPUT

CR—CARD READER; CS—CASSETTE TAPE; MT—MAGNETIC TAPE; DF—DISKFILE; CP-
CARD PUNCH; LP—LINE PRINTER

CROSS ASSEMBLER SYSTEM FILES

711

9900 FAMILY SYSTEMS DESIGN 	 7-77

ASSEMBLER DIRECTIVES
	

Program Development:
Software Commands —
Description and Formats

AORG places the expression value in the location counter, and defines the succeeding
locations as absolute.

ABSOLUTE ORIGIN 	 AORG
Syntax Definition:

[<label>]0 . AORG0 . <wd-exp>0 .[<comment>]

RORG places the expression value in the location counter, and defines the succeeding
locations as relocatable.

RELOCATABLE ORIGIN 	 RORG
Syntax Definition:

[< label> 0 . RORG0 	[<exp>]V .[<comment>]

DORG places the expression value in the location counter, and defines the succeeding
locations as a dummy section. No object code is generated in a dummy section.

DUMMY ORIGIN 	 DORG
Syntax Definition:

<label>0 . . . DORG0 	<exp>0 4<comment>]

BSS first assigns the label, if present, and increments the location counter by the value of the
expression.

BLOCK STARTING WITH SYMBOL 	 BSS
Syntax Definition:

[<label>]0 	BSS0 	<wd-exp>0 1<comment>1

BSS first increments the location counter by the value of the expression, and then assigns
the label, if present.

BLOCK ENDING WITH SYMBOL 	 BES
Syntax Definition:

[<label>])75 	BESO ... <wd-exp>0 1<comment>]

EQU assigns an assembly-time constant to the label.

DEFINE ASSEMBLY-TIME CONSTANT 	 EQU
Syntax Definition:

<label>0 	EQUO 	<exp>tzi 1<comment>]

EVEN first assigns the label, if present, and then aligns the location counter on a word
boundary (even address).

WORD BOUNDARY 	 EVEN
Syntax Definition:

[<label>]0 . . . EVENO 1<comment>]

OPTIONS allows cross referencing when XREF is specified, and allows printing of the
symbol table when SYMT is present.

OUTPUT OPTIONS 	 OPTION
Syntax Definition:

OPTION0 ... <keyword> [,<keyword>] . . . 0 . . . [<comment>]

7-78 	 9900 FAMILY SYSTEMS DESIGN

Program Development:
Software Commands —
Description and Formats

ASSEMBLER DIRECTIVES

IDT assigns a name to the program, and must precede any code-generating directive or
instruction.

PROGRAM IDENTIFIER 	 IDT
Syntax Definition:

[<label>]0 . . . IDT0 ... <string>0 . ..[<comment>]

TITL supplies a string to be printed at the top of each subsequent source listing page.
PAGE TITLE 	 TITL
Syntax Definition:

[<label>]0 . . . TITL0 	<string>0 ... [<comment>]
LIST restores printing of the source listing.

LIST SOURCE 	 LIST
Syntax Definition:

[<label>]0 . LISTIzi 	[<comment>]
UNL inhibits printing of the source listing.

NO SOURCE LIST
	

UNL
Syntax Definition:

[<label>]0 	UNLO 	[<comment>]

PAGE directs the assembler to continue the source listing on the next page.
PAGE EJECT
	

PAGE
Syntax Definition:

[<label>]0 ... PAGED . [<comment>]

BYTE places expressions in successive bytes, optionally assigning the label the address of
the first byte.

INITIALIZE BYTE 	 .BYTE
Syntax Definition:

[<label>]0 . BYTE0 	<exp>[,<exp>] . . . 	[<comment>]
DATA places expressions in successive words, optionally assigning the label the address 	71
of the first word.

INITIALIZE WORD 	 DATA
Syntax Definition:

[<label>]0 . . . DATA0 . . . <exp>[,<exp>] [<comment>]
TEXT places characters in successive bytes, arithmetically negating the last character, and
optionally assigns the label the address of the first character.

INITIALIZE TEXT 	 TEXT
Syntax Definition:

[<label>]0 . . . TEXT0 . . . [—]<string>0 	. [<comment>]

9900 FAMILY SYSTEMS DESIGN 	 7-79

ASSEMBLER DIRECTIVES Program Development:
Software Commands —
Description and Formats

DEF makes symbols available to other programs as external references.

EXTERNAL DEFINITION 	 DEF
Syntax Definition:

[<label>]0 . DEF0 . . . <symbol>[,<symbol>] 	[<comment>]

REF directs the assembler to look externally for symbols.
EXTERNAL REFERENCE 	 REF
Syntax Definition:

[<label>]0 	REF0 . . . <symbol>[,<symbol>] .. 	. [<comment>]

DXOP assigns an extended operation to a symbol.
DEFINE EXTENDED OPERATIONS 	 DXOP
Syntax Definition:

[<label>]0 	DX0P0 . . . <symbol>,<term>0 	[<comment>]

END terminates the assembly
PROGRAM END 	 END
Syntax Definition:

[<label>]0 	ENDO . [<symbol>]0 ... [<comment>]

NOP places a no-operation code in the object file.
NO OPERATION 	 NOP
Syntax Definition:

[<label>]0 . . . NO1175 	[<comment>]
RT assembles as a return from subroutine by substituting a branch through register 11.

RETURN
	

RT
Syntax Definition:

[<label>]0 . . . RTIzS . . . [<comment>]

7-80 	 9900 FAMILY SYSTEMS DESIGN

SIMULATOR FILES

SIMULATOR FILES

INTERNAL DEFAULT DEVICE RECORD FUNCTION 	WHERE
NAME UNIT TYPE LENGTH USED

INCOPY 4 MT,DF 80 Batch copy file C
INCOM 5 TE,CR 80 Simulation command C

MT,DF
OUTPRT 6 MT,DF 80 or Listing output L,C,R
OUTTRC TE,CR 136

INLOD 10 TE,CR 80 Linker commands L
MT,DF

OUTCOM 11 TE,LP 80 or
136

Prompts and error msg.
for linker output

L

OUTSAV 17 MT,CP 80 Absolute object L,S
DF

INSCR 20 MT,DF 136 Input scratch file C,R,S
OUTSCR 21 MT,DF 136 Output scratch file L,C,R

Device type legend
TE—terminal; CR—card reader; MT—magnetic tape; DF—disk file; CP—card punch

Where used legend
L—link processor; C—command processor; R—run processor; S-save processor

In addition to the above unit number assignments, the user must also assign unique
FORTRAN logical unit numbers to each TMS9900 object code module to be included in
the LINK processor.

71

9900 FAMILY SYSTEMS DESIGN 	 7-81

SIMULATOR DIRECTIVES
	

Program Development:
Software Commands—
Description and Formats

SIMULATOR DIRECTIVES

ORIGIN COMMAND. The "ORIGIN" command can be used to specify where relocatable
code is to be loaded.

ORIGIN hex-number

INCLUDE COMMAND. The "INCLUDE" command directs the loader to load an object
module from a data set (e.g., card reader, disc, tape). The data set must be a sequential
data set and may contain one or more object modules. At least one "INCLUDE"
command should be used in the LINK processor command stream. The format for the
command is as follows:

INCLUDE n

ENTRY COMMAND. The "ENTRY" command specifies the program entry point to the
loader. The format for the command is as follows:

ENTRY name

SUMMARY OF CONTROL LANGUAGE STATEMENTS

The formats of the control statements for the "COMMAND" processor are shown below, with
a brief description following:

[label] {RUN 	{FOR}

[label] { TRACE } [list]

 [label] IN8TRACEI [list]

[label] {REFER } [list]

[list] 7 	[label] INNOFREFER} 	 Disables reference breakpoint at specified
locations.

[label] }ALTER I [list] 	 Specifies locations for alteration breakpoint.

[label] { fIOAALTER } [list] 	 Disables alteration breakpoint at specified
locations.

[label] IriROTECT [list] 	 Specifies areas for memory protection.

[label] IF (logical expression) label 	Conditional transfer of control program.

[label] i jump } label 	 Unconditional transfer of control program.

[label] {-L E } [n] 	 Prints the value of 9900 time and optionally sets
a new value.

[label] { DISPLAY } [D] {CPU } [register list] Prints contents of registers.

[label] {DISPLAY f [DC] 1 NMEMORY} list 	Prints contents of memory.

[FROM} i][{-rT
 o}]12 [,label]

Specifies where to start and stop simulation.
Control passes to statement at label operand
when a breakpoint occurs.

Specifies locations to be traced.

Disables trace for specified locations.

Specifies locations for reference breakpoint.

7-82 	 9900 FAMILY SYSTEMS DESIGN

Program Development:
Software Commands—
Description and Formats

[label]
DISPLAY !SYMBOL

$
s
number

410`
[label] INPUT

DDISPLAY} {gRR UI
t 	

0 	
list

OUTPUT

[label] 	{2,} register-value list

[label] {S
SET {MEMORY} M 	location-value list

[label] 	 level, n1 [,n2,n3]

SIMULATOR DIRECTIVES

Prints values from symbol table.

Prints CRU values.

Places values into registers.

Places values into memory.

Sets up one or more interrupts.

[label] IEND1 	 Disables breakpoints and traces, and initializes
simulation. Passes control to next control
statement.

_ —
F

n 	FIRST
[label

{INPUT} n
1 TO n

LAST 	
[data] Defines input lines and fields, and supplies data

A 	
for program being simulated.

ALL
n

[label] OUTPUT in ' TO n z 	 Defines output lines and fields, or prints output of
program being simulated.

[label] {28
1r■II NI ECT} list 	 Connects input CRU lines to output CRU lines.

[label]

	

	 expression list 	Evaluates and prints values of expressions in {CONVERT expression
and hexadecimal form.

BBATCH} 	 Specifies batch mode.

[label]
{LOAD } 	 Loads Wp and PC from locations FFFC 16 and

FFFE16.
[label]

CLOCK t
	 Specify clock period.

RAL

[label] INN/EMORY} 	 (READ n ' [(WRITE} =
ndiist

ROM

[label] {SA
E

}
{S

AE}
[label] ON 	n

(WIDTH

Define available memory. Default is 32K RAM.

Create absolute object module.

Specifies number of columns available for
printing.

74

9900 FAMILY SYSTEMS DESIGN 	 7-83

SIMULATOR DIRECTIVES
	

Program Development:
Software Commands—
Description and Formats

MONITOR COMPLETION CODES

The simulator signals completion by executing and writing an appropriate STOP I
statement, where I takes on one of the following values:

CODE MEANING

0 	Normal completion
1 	Abnormal completion from LNKPRC
2 	Premature EOF

—If this error occurs it indicates that a premature EOF was encountered while
attempting to reposition the BATCH command file.

3 	Internal error; invalid label value
4 	Roll memory overflow
5 	Loader error

—If this error occurs it means an attempt was made to load an object file into
simulated memory and it failed causing termination of the link processor.

8 	Abnormal completion from LOADER
9 	Abnormal completion from CMDPRC
99 	Internal error

—Illegal completion from CMDPRC
Internal error

999 	Internal error
—Illegal parameter passed to WRITER

If an error of 99 or 999 results, an internal error has occurred and the error should be
reported to TEXAS INSTRUMENTS INC.

0.7

7-84 	 9900 FAMILY SYSTEMS DESIGN

Program Development:
	

SIMULA1 UK I.;KKUK
Software Commands—
Description and Formats

LINK PROCESSOR ERRORS

CODE 	MESSAGE

LO1 	Load not completed
L02 	Multiply defined external symbol (name)
L03 	Empty object file on unit
L04 	Attempt to load undefined memory
L05 	Tag D follows tag 0
L06 	Invalid tag character
L09 	Undefined external memory
L13 	Empty memory on save
L14 	(name) not in external symbol table
L18 	Maximum memory size exceeded
L19 	Missing end
L21 	Checksum error (computed value)
L22 	Odd origin value specified—even value used
L24 	Ref chain loop
L25 	Object module does not start with tag 0
L26 	Odd value (value) specified for tag (tag) even value used
L27 	Missing F tag in record (number)
L28 	Bad REF chain for (name)
L29 	Bad object format in object module
L30 	Illegal hex digit in field (digit)

COMMAND PROCESSOR ERRORS

CODE
NUMBER NAME

CODE
MESSAGE 	 NUMBER 	NAME MESSAGE

1 BADCHR Bad character 18 RANGE Range error
2 BADCMD Unrecognizable command 19 SYNTAX Syntax error
3 BADIGT Bad digit 20 TOOMNY Too many values
4 BADMOD Bad module name 21 UNDEF Undefined symbol
5 BADREG Bad register mnemonic
6 BADVAL Bad value
7 CRUSPC CRU specification error
8 FLDCNT Too few/many fields
9 HITEOF Hit EOF

10 HITEOL Hit end-of-line
11 MEMDEF Undefined
12 MISSEQ Missing equal sign
13 NODATA No data found
14 NOROL No data rolls available
15 NOSET Set not performed
16 NOTIMP Command not implemented
17 ORDER Command out of order

74

9900 FAMILY SYSTEMS DESIGN 	 7-85

SIMULATOR ERRORS
	

Program Development:
Software Commands—
Description and Formats

RUN PROCESSOR ERRORS

CODE 	MESSAGE

1 	 PC interrupt vector entry in undefined memory
2 	 WP interrupt vector entry in undefined memory
3 	 Register out of address space (WP 65502)
4 	 Registers in undefined memory
5 	 Registers in ROM
6 	 PC interrupt vector refer breakpoint
7 	 WP interrupt vector refer breakpoint
8 	 Register alter breakpoint
9 	 Register protect breakpoint

10 	 Register refer breakpoint
11 	 Undefined opcode
12 	 Undefined memory reference
13,14 	Unused
15 	 PC refer breakpoint
16 	 Unimplemented opcode
17,18,19 	Unused
20 	 Destination address in undefined memory
21 	 Destination refer breakpoint
22 	 Destination alter breakpoint
23 	 Destination ROM breakpoint
24 	 Unused
25 	 Source address in undefined memory
26 	 Source refer breakpoint
27 	 Source alter breakpoint
28 	 Source ROM breakpoint

■ 7

7-86 	 9900 FAMILY SYSTEMS DESIGN

1
F-

z

O

Q0 Z

W

▪ Z
- 0
0 < 1_-

0

CC
w 	01
O 0

0 	U)

WI _j w

z 0 0
'„,T 0 2
H
Z H 0
0 O Li cn

(-) 	Z
I— Go 0 co
0 < 0_ 	0 t— Z 	<

U) 0
>-
CC 	co
< Z CT)
2 < Z Z
EE CID C) CD
0 0 1---

• Z
cc cc Lu 2 	„„
0 	<C < 2 0= CL
0 0 on CC
_J 0 J C)

CE
0

cc
w
m cc
2 0,
cn cn CE

O
P

T
IO

N
A

L
 P

A
T

H

74

Program Development:
Software Commands—
Description and Formats

TMSUTL

TMSUTL

CONCEPT

TMSUTL is a general purpose ultility program that accepts as input TI microprocessor
object format, PROM manufacturing formats, or ROM manufacturing formats. This data is
syntax checked, output options are gathered, the input data converted and an output file
is produced.

9900 FAMILY SYSTEMS DESIGN
	

7-87

■

TMSUTL Program Development:
Software Commands—
Description and Formats

INPUT, OUTPUT CONTROL CARD FORMATS

GENERAL DESCRIPTION

INPUT frmt [addrl addr2] [WIDTH = x] [PARTITION = y]

frmt 	— is the format number (integer 1-12).

addrl 	— is the starting address where input data is to be stored.

addr2 	— is the maximum address where data is to be stored.

x 	— is the bit width of the input words.

y 	— is the number of input data set partitions 1 Y 4

OUTPUT num addrl addr2 WIDTH = x PARTITION = y

num 	 is the format number (integer 1-12).

addrl 	is the minimum address to be output.

addr2

	

	— is the maximum address to be output.

— is the bit width of an output word.
—

7

E0E—End of COMMAND FILE indicator

AVAILABLE FORMATS

INPUT OUTPUT FORMAT # FORMAT

1

2

3
4

5

6

7

8
9

10

11

12

Hexadecimal # 1 (PROM)

Hexadecimal 4* 2 (ROM)
BNPF

271 & 371 ROM/HILO of prototyping System

TMS8080/TMS1000 Absolute Object from
SIM8080/SIM1000 Loader/Simulator

TMS1000 Absolute ROM Object from Assembler

TMS1000 Listed Absolute Object

TMS1000 OPLA Data
TMS9900 Standard Absolute Object of Cross
Support System (Assembler or Loader/Simulator) &
Prototyping System

TMS9900 Compressed Absolute Object of
Prototyping System
114700 ROM

TI4800 ROM

X

X
X

X

X

X

X

X
X

X

X
X

X

X
X

X

X

X

X

X

X

X
X

7 -88 	 9900 FAMILY SYSTEMS DESIGN

Program Development:
	

1 IVIU 1 L
Software Commands—
Description and Formats

TMSUTL FORMAT PATHS

Output Format 	1 	2 	3 	4 	5 	6 	7 	8 	9 	10 11 	12

an. 1) Hexadecimal # 2 	YES YES YES YES NO NO YES NO NO NO YES YES
(PROM)

2) Hexadecimal # 2 	YES YES YES YES NO NO YES NO NO NO YES YES
(ROM)

3) BNPF 	 YES YES YES YES YES YES YES NO YES YES YES YES

4) 271 & 371 ROM/ 	YES YES YES YES NO NO YES NO NO NO YES YES
HILO of Prototyping
System

5) TMS1000 / TMS8080 YES YES YES YES YES YES YES NO NO NO YES YES
Absolute Object from
Loader/Simulator

6) TMS1000 Absolute YES YES YES YES YES YES YES NO NO NO YES YES
ROM Objects from
Assembler for
masking

7) TMS1000 Listed 	YES YES YES YES YES YES YES NO NO NO YES YES
Absolute Object

8) TMS1000 OPLA Data YES YES YES NO NO NO NO NO NO NO NO NO

9) TMS9900 Standard YES YES YES YES NO NO NO NO YES YES YES YES
Absolute Object of
Cross Support System
(Assembler or
Loader/Simulator) &
Prototyping System

10) TMS9900 	 YES YES YES YES NO NO NO NO YES YES YES YES
Compressed Absolute
Object of Protoyping
System

11) TI4700 ROM 	YES YES YES YES YES NO YES NO NO NO YES YES

12) TI4800 ROM 	YES YES YES YES YES NO YES NO NO NO YES YES

74

9900 FAMILY SYSTEMS DESIGN 	 7-89

11VMU 1 L Program Development:
Software Commands—
Description and Formats

DATA DELIMITERS

The following is a table of data delimiters or end-of-module records for Input Data.

FORMAT # TYPES

1. Hex format 1

2. Hex format 2

3. BNPF

4. 271/371 ROM and HILO of Prototyping System
5. TMS8080/TMS1000 Absolute Object from

Loader/Simulator

6. TMS1000 Absolute ROM Object
7. TMS1000 Listed Absolute Object

8. TMS1000 OPLA Data

9. TMS9900 Standard Absolute Object
10. TMS9900 Binary Compressed Absolute Object
11. TI4700 ROM

12. TI4800 ROM

End of file record (:00)

Trailer record — "END OF TEXT"
(hollerith code 12-9-3) character
followed by 79 non-blank characters
(without asterisks)
End of file record ($ in column 1)

End of file record ($END)
End record (+ END)

End of file record ($END)

End of file record ($END)

End of file record ($END)

End of module record (:)
End of file record ($END)

End of file record ($END)

End of file record ($END)

ADDRESS RANGES FOR FORMATS

FORMAT# FORMAT 	 ADDRESS RANGE

1 	Hexadecimal #1 (PROM) 	 (0-FFFF)H
2 	Hexadecimal # 2 (ROM) 	 None
3 BNPF 	 None
4 	271 & 371 ROM/HILO of Prototyping System 	None
5 	TMS8080/TMS1000 Absolute Object from Loader/ (0-255)

Simulator

6 	TMS1000 Absolute ROM Object 	 (0-800)H
7 	TMS1000 Listed Absolute Object 	 (0-1 Chapter 0-15 page 0-3F

location)H
8 TMS1000 OPLA Data

	

9 	TMS9900 Standard Absolute Object

	

10 	TMS9900 Compressed Absolute Object

	

11 	TI4700 ROM

	

12 	Tl4800 ROM

(0-1 F)H

 (0-FFFF) H

 (0-FFFF)H

 (0-400)H
(0-400) H

7-90 9900 FAMILY SYSTEMS DESIGN

"IOW

Program Development:
Software Commands—
Description and Formats

1V13 U 	L

INPUT AND OUTPUT WIDTHS FOR FORMATS

WIDTH (BITS) FORMAT# FORMAT

1 Hexadecimal # 1 (PROM) 8
2 Hexadecimal #2 (ROM) 8
3 BNPF 2 or 4 or 8 or 16
4 271 & 371 ROM/HILO of Prototyping System 4 or 8
5 TMS8080/TMS1000 Absolute Object from Loader/ 8

Simulator
6 TMS1000 Object from Assembler 8
7 TMS1000 Listed Absolute Object 8
8 TMS1000 OPLA Data 8 or 16
9 TMS9900 Standard Absolute Object 16

10 TMS9900 Compressed Absolute Object 16
11 114700 ROM 8
12 114800 ROM 4 or 8

FILES DEFINITIONS & DESCRIPTIONS

INIOT

CTLUNT 	— Input file for control cards,
INUNT 	— Input file for data.
INTIN 	— Intermediate file for storage of input data. It must be a rewindable file with a

logical record length of 80 bytes.
INTOT 	— Intermediate file for storage of internal data. It must be a rewindable file with

a logical record length of 80 bytes.
OTUNT 	Output file for translated data.
LSTUNT 	— Print file for listing of data and error messages.

MRGUNT — Intermediate file for storage of internal data. It must be a rewindable file with
a logical record length of 80 bytes.

9900 FAMILY SYSTEMS DESIGN
	

7-91

I IVI JU Program Development:
Software Commands—
Description and Formats

TMSUTL ERROR MESSAGES

• INPUT CONTROL CARD MISSING. Input control card missing or misplaced; it should be
the first control card.

—INVALID CONTROL CARD FIELD. Control card has an invalid field. Dollar signs point to
the beginning and the end of the field.

• OUTPUT FORMAT INCOMPATIBLE WITH INPUT FORMAT. The output format specified can
not be converted from the input format specified.

▪ OUTPUT FORMAT MISSING. Output control card missing or misplaced; it should follow the
Input card.

▪ ADDR2 ADDR1 OR BOTH NOT SPECIFIED. Either minimum or maximum address is
invalid. Addr1 must be less than or equal to Addr2.

▪ WIDTH INVALID FOR I/O FORMAT SPECIFIED. For the format specified the bit width is
invalid.

• PARTITION ERR. The Input bit width times the number of input partitions is not equal to the
width times the number of output partitions.

• ERROR DETECTED ON INPUT CARD. The format of a data card is invalid, check the field
pointed to by the dollar signs.

• INPUT OUT OF SEQUENCE. The addresses of the input data are not in sequential order.

• # OF WORDS INPUT FOR CURRENT PARTITION NOT EQUAL TO THAT IN PREVIOUS
PARTITION. The number of words input for each partition is not equal. Check the input
data.

• ADDRESS OUT OF RANGE. Either Addr1 or Addr2 is out of range or the address read on
the input data is out of range of the format specified.

STOP CODES 	ERROR

1 	 Input data error. (A message describing the error is output before
this is issued.)

2 	 Format not implemented yet in EOF.

3 	 Format not implemented yet in TRANS.

STOP CODES 	ERROR

90 	 DECHEX unable to find H or blank.

91 	 Data will not fit in card field passed to AFORMT.
92 	 Invalid format number in EOF.
93 	 Invalid width passed to INWORD.
94 	 SHFTR called with invalid arguments.
95 	 TRANS called with an invalid format number.

7 -92 	 9900 FAMILY SYSTEMS DESIGN

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92

